Skip to main content

Advertisement

Log in

Provenance composition, paleo-weathering and tectonic setting of Himalayan foreland basin sediments, Kumaun Sub-Himalaya, India

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

Clastic rocks of foreland basin from Nandhaur Sanctuary area, Kumaun Sub-Himalaya were studied to interpret their lithological composition, provenance, source area weathering characteristics and tectonic setting. Detailed geochemical investigation on 33 mudstone and petrographic study of 25 sandstone samples have been carried out. Sandstones are classified as quartz-arenite to sublith-arenite; lithic to subarkosic arenite and lithic to arkosic greywacke using detrital mode analysis. Chemically, mudstone is identified as greywacke to lithic-arenite and also straddles between shale and wacke with a few in lithic-arenite field. CIA values vary from 55.8 to 78.7 for Lower Siwalik, 53–78.3 for Middle Siwalik and, 58.8–81.7 for Upper Siwalik sediments. These results suggest that differential weathering conditions acted upon the sediment provenance: under steady to non-steady-state, variable climatic conditions, and Cenozoic tectonic uplifting along Himalayan thrusts. Chemical data in Al2O3-CaO-Na2O-K2O (A-CN-K) plot depart from the granite-granodiorite field towards the illite-muscovite indicating weathering trend in provenance. Chemically, mudstone bears the signature of Passive Margin tectonic setting of deposition which is inherited from the source rock. High field strength element (HFSE) and Rare Earth Element (REE) content of mudstone support the felsic upper crustal material as source, whereas transition elements advocate minor contribution from mafic rocks. Chondrite normalized high Light REE (LREE)/ Heavy REE (HREE) ratio (11.15–15.11), sloping LREE and near-flat HREE, negative Eu anomaly (Eu/Eu* = 0.6–0.88) indicate the evolved upper crustal material as the prominent source. The trace element ratio in mudstone; La/Sc (0.71–5.86), Cr/Th (2.42–9.50), Th/Co (0.07–0.95), and La/Co (0.15–2.31), supports the sediment derivation from felsic sources however Th/Co values indicate the mixed source rocks. The geochemistry of mudstone shows affinity with the rocks of high-grade Higher Himalaya and low-grade Lesser Himalaya and is a useful proxy for understanding the various tectonic and paleo-climatic conditions that prevailed during the evolution of Himalayan Foreland Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

source area; g Lithic fragment of quatz-mica schist and sandstone indicating mixed provenance of sedimentary and metamorphic terrain; h Polycrystalline quartz with biotite and shale association; i Microcline feldspar with mylonitic gneiss and muscovite as detrital composition; j Presence of pl and mylonitic gneiss. Both i and j support the derivation of sediments from igneous, as well as high grade metamorphic terrain in the provenance. k and l Presence of heavy minerals like grt-ky-rt-tur-ap-zrn-opq derived from acidic igneous and high-grade metamorphic rocks. Abbr: Qm; quartz monocrystalline, Qp: polycrystalline quartz, pl: plagioclase, bt: biotite, mus: muscovite, grt: garnet, ky: kyanite, rt: rutile, tur: tourmaline, ap: apatite, zrn- zircon, opq: opaque (mineral abbreviations after Whitney & Evans, 2010)

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

source composition and tectonic setting of sediment deposition. The darker line fields are after Bhatia and Crook (1986); dotted line fields are after Cullers (1994). Abbv: PM: Passive Margin; ACM: Active Continental Margin; CIA: Continental Arc; OIA: Oceanic Island Arc

Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All the datasets generated during the course of this study and are related to this work have been included in this manuscript.

References

  • Acharyya, S. K. (1990). Pan-Indian Gondwana plate break-up and evolution of the northern and eastern collision margins of the Indian Plate. Journal of Himalayan Geology., 1, 75–91.

    Google Scholar 

  • Ahmad, T., Harris, N., Bickle, M., Chapman, H., Bunbury, J., & Prince, C. (2000). Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garwhal Himalaya. Geological Society of America Bulletin, 112, 467–477. https://doi.org/10.1130/0016-7606(2000)112%3C467:ICOTSR%3E2.0.CO;2

    Article  Google Scholar 

  • Ali, S., Phartiyal, B., Taloor, A., Arif, M., & Singh, B. P. (2021). Provenance, weathering, and paleoclimatic records of the Pliocene-Pleistocene sequences of the Himalayan foreland basin, NW Himalaya. Arabian Journal of Geosciences, 14, 198. https://doi.org/10.1007/s12517-021-06461-4

    Article  Google Scholar 

  • Andersson, P. O. D., Worden, R. H., Hodgson, D. M., & Flint, S. (2004). Provenance evolution and chemostratigraphy of a Palaeozoic submarine fan-complex: Tanqua Karoo Basin, South Africa. Marine and Petroleum Geology, 21, 555–577.

    Article  Google Scholar 

  • André, L., Deutsch, S., & Hertogen, J. (1986). Trace-element and Nd isotopes in shales as indexes of provenance and crustal growth: The early Paleozoic from the Brabant Massif (Belgium). Chemical Geology, 57(1–2), 101–115. https://doi.org/10.1016/0009-2541(86)90096-3

    Article  Google Scholar 

  • Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., & Ramasamy, S. (2004). Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering and tectonic setting. Journal of Sedimentary Research, 74(2), 285–297. https://doi.org/10.1306/082803740285

    Article  Google Scholar 

  • Awasthi, N. (2017). Provenance and paleo–weathering of Tertiary accretionary prism–forearc sedimentary deposits of the Andaman Archipelago, India. Journal of Asian Earth Sciences, 150, 45–62. https://doi.org/10.1016/j.jseaes.2017.10.005

    Article  Google Scholar 

  • Basu, A., Young, S. W., Suttner, L. J., James, W. C., & Mack, G. H. (1975). Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Petrology, 45, 873–882.

    Google Scholar 

  • Bhakuni, S. S., Luirei, K., & Devi, M. (2012). Soft sediment deformation structures (seismites) in Middle Siwalik sediments of Arunachal Pradesh, NE Himalaya. Himalayan Geology, 33(2), 139–145.

    Google Scholar 

  • Bhatia, M. R. (1985). Rare-earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sedimentary Geology, 45, 97–113. https://doi.org/10.1016/0037-0738(85)90025-9

    Article  Google Scholar 

  • Bhatia, M. R., & Crook, K. A. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contribution to Mineralogy and Petrology, 92, 181–193. https://doi.org/10.1007/BF00375292

    Article  Google Scholar 

  • Bhatia, M. R., & Taylor, S. R. (1981). Trace element geochemistry and sedimentary provinces: A study from the Tasman Geosyncline, Australia. Chemical Geology, 33, 115–126.

    Article  Google Scholar 

  • Bock, B., McLennan, S. M., & Hanson, G. N. (1998). Geochemistry and provenance of the middle Ordovician Austin glen member (Normanskill formation) and the Taconian Orogeny in new England. Journal of Sedimentary Research, 45, 635–655. https://doi.org/10.1046/j.1365-3091.1998.00168.x

    Article  Google Scholar 

  • Brookfield, M. E. (1993). The Himalayan passive margin from Precambrian to Cretaceous times. Sedimentary Geology, 84, 1–35. https://doi.org/10.1016/0037-0738(93)90042-4

    Article  Google Scholar 

  • Burchfiel, B. C., Chen, Z., Hodges, K. V., Liu, Y., Royden, L. H., Deng, C., & Xu, J. (1992). The South Tibet Detachment System, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geological Society of America Special Paper, 269, 1–41. https://doi.org/10.1086/376763

    Article  Google Scholar 

  • Burg, J. P., Brunel, M., Gapais, D., Chen, G. M., & Liu, G. H. (1984). Deformation of leucogranites of the crystalline main central sheet in southern Tibet (China). Journal of Structural Geology, 6, 535–542. https://doi.org/10.1016/0191-8141(84)90063-4

    Article  Google Scholar 

  • Catlos, E. J., Harrison, T. M., Kohn, M. J., Grove, M., Ryerson, F. J., Manning, C. E., & Upreti, B. N. (2001). Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. Journal of Geophysical Research, 106, 16177–16204.

    Article  Google Scholar 

  • Chauhan, D. S. (2015). Magmatic and geochemical evolution of Chirpatiyakhal and Thati Kathur granites, Kumaun Lesser Himalaya. Geological Survey of India Unpublished Report for F.S. 2013–2015, p. 118.

    Google Scholar 

  • Chauhan, D. S., Chauhan, R., Shankar, B., & Kesari, G. K. (2022). Structural and Kinematic Study of Ghuttu Window: Implication on the Tectonic Evolution of Bhilangana Formation, Central Crystalline Group, Garhwal Himalaya, India. Journal of Earth System Sciences. (Accepted manuscript)

  • Chauhan, D. S., Shankar, B., & Chauhan, R. (2013). Tectonostratigraphy and tectonic setting of Bhilangana formation vis-à-vis Central crystallines. Geological Survey of India Unpublished Report for Field season 2010-2013, p. 117.

    Google Scholar 

  • Clift, P. D., Hodges, K. V., Heslop, D., Hannigan, R., Van Long, H., & Calves, G. (2008). Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geosciences, 1, 875–880. https://doi.org/10.1038/ngeo351

    Article  Google Scholar 

  • Compton, R. R. (1962). Manual of Field Geology (p. 378). New York: John Wiley & Sons.

    Google Scholar 

  • Cox, R., Lowe, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica Et Cosmochimica Acta, 59, 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9

    Article  Google Scholar 

  • Cullers, R. L. (1988). Mineralogical and chemical changes of soil and stream sediments formed by intense weathering of the Danberg granite, Georgia, USA. Lithos, 21, 301–314. https://doi.org/10.1016/0024-4937(88)90035-7

    Article  Google Scholar 

  • Cullers, R. L. (1994). The controls of major and trace elements variation of shales, siltstones and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediments in Kansas, USA. Geochimica Et Cosmochimica Acta, 58, 4955–4972. https://doi.org/10.1016/0016-7037(94)90224-0

    Article  Google Scholar 

  • Cullers, R. L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51, 181–203. https://doi.org/10.1016/S0024-4937(99)00063-8

    Article  Google Scholar 

  • Cullers, R. L., Basu, A., & Suttner, L. J. (1988). Geochemical signature of provenance in sandsize material in soil and stream sediments near the Tobbaco Root batholith, Montana, USA. Chemical Geology, 70, 335–348. https://doi.org/10.1016/0009-2541(88)90123-4

    Article  Google Scholar 

  • Cullers, R. L., & Graf, J. L. (1984). Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks—ore petrogenesis. In P. Handerson (Ed.), Rare earth element geochemistry (pp. 275–316). Elsevier. https://doi.org/10.1016/B978-0-444-42148-7.50013-7

    Chapter  Google Scholar 

  • Das, B. N., Das, N., & Siddique, M. A. (1974). Reports on geological and geomorphological studies in parts of Sarda sub-basin Nainital and Pilibhit districts, U.P. Geological Survey of India Unpublished Report for Field Season 1973-1974, p. 24.

    Google Scholar 

  • Das, B. P., Joshi, M., & Kumar, M. (2019). Tectonochemistry and P-T Conditions of Ramgarh and Almora Gneisses from Askot Klippe, Kumaun Lesser Himalaya. Acta Geologica Sinica (English Edition), 93(1), 1–11. https://doi.org/10.1111/1755-6724.13814

    Article  Google Scholar 

  • Debon, F., Le Fort, P., Sheppard, S. M. F., & Sonet, J. (1986). The four plutonic belts of the Transhimalaya-Himalaya: A chemical-mineralogical, isotopic and chronological synthesis along a Tibet-Nepal section. Journal of Petrology, 27(1), 219–250.

    Article  Google Scholar 

  • DeCelles, P. G., Gehrels, G. E., Quade, J., Ojha, T. P., Kapp, P. A., & Upreti, B. N. (1998). Neogene foreland basin deposits, erosional unroofing and the kinematic history of the Himalayan fold–thrust belt, western Nepal. Geologcial Society of America Bulletin, 110, 2–21. https://doi.org/10.1130/0016-7606(1998)110%3C0002:NFBDEU%3E2.3.CO;2

    Article  Google Scholar 

  • DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105–123. https://doi.org/10.1046/j.1365-2117.1996.01491.x

    Article  Google Scholar 

  • DeCelles, P. G., & Hertel, F. (1989). Petrology of fluvial sands from the Amazonian foreland basin, Peru and Bolivia. Geologcial Society of America Bulletin, 101(12), 1552–1562.

    Article  Google Scholar 

  • DeCelles, P. G., Robinson, D. M., Quade, J., Ojha, T. P., Garzione, C. N., Copeland, P., & Upreti, B. N. (2001). Stratigraphy, structure and tectonic evolution of the Himalayan fold–thrust belt in western Nepal. Tectonics, 20, 487–509. https://doi.org/10.1029/2000TC001226

    Article  Google Scholar 

  • Dickinson, W. R. (1985). Interpreting relations from detrital modes of sandstone. In G. G. Zuffa (Ed.), Provenance of arenite . Dordrecht-Boston-Lancaster, pp. 333–362.

    Chapter  Google Scholar 

  • Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone compositions. Bulletin of American Association of Petroleum Geology, 63, 2164–2182. https://doi.org/10.1306/2F9188FB-16CE-11D7-8645000102C1865D

    Article  Google Scholar 

  • DiPietro, J. A., & Pogue, K. R. (2004). Tectonostratigraphic subdivisions of the Himalaya: A view from the west. Tectonics, 23(5), 1–20. https://doi.org/10.1029/2003TC001554

    Article  Google Scholar 

  • Fedo, C. M., Eriksson, K. A., & Krogstad, E. J. (1996). Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for provenance and source-area weathering. Geochimica Et Cosmochimica Acta, 60, 1751–1763. https://doi.org/10.1016/0016-7037(96)00058-0

    Article  Google Scholar 

  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924. https://doi.org/10.1130/0091-7613(1995)023%3c0921:UTEOPM%3e2.3.CO;2

    Article  Google Scholar 

  • Floyd, P. A., & Leveridge, B. E. (1987). Tectonic environment of the Devonian Gramscatho Basin South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society (London), 144, 531–542. https://doi.org/10.1144/gsjgs.144.4.0531

    Article  Google Scholar 

  • Folk, R. L. (1974). Petrology of sedimentary rocks (p. 182). Hemphill Publishing Co.

    Google Scholar 

  • Folk, R. L. (1980). Petrology of sedimentary rocks (p. 182). Hemphill.

    Google Scholar 

  • Frank, W., Thoni, M., & Purtscheller, F. (1977). Geology and petrography of Kulu-south Lahul area. Himalayas (Vol. 268, pp. 147–172). Science de la Terre, CNRS.

    Google Scholar 

  • Fuchs, G., & Linner, M. (1995). Geological traverse across the western Himalaya—a contribution to the geology of eastern Ladakh, Lahul, and Chamba. Jahrbuch Der Geologischen Bundesanstalt., 138, 665–685.

    Google Scholar 

  • Gallet, S., Jahn, B., Van Vliet Lanoe, B., Dia, A., & Rossello, E. (1998). Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters, 156, 157–172. https://doi.org/10.1016/S0012-821X(97)00218-5

    Article  Google Scholar 

  • Ganesan, T. M. (1975). Paleocurrent pattern in the Upper Tal rocks of Nigali, Korgai Synclies (H.P.) and Mussoori Syncline (U.P.). Journal of Geological Society of India, 16, 503–507.

    Google Scholar 

  • Gansser, A. (1964). Geology of the Himalayas (p. 289). Wiley InterScience.

    Google Scholar 

  • Garcia, D., Fonteilles, M., & Moutte, J. (1994). Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. Journal of Geology, 102, 411–422. https://doi.org/10.1086/629683

    Article  Google Scholar 

  • Ghosh, S. K., & Kumar, R. (2000). Petrography of Neogene Siwalik Sandstone of the Himalayan Foreland Basin, Garhwal Himalaya: Implications for Source-Area Tectonics and Climate. Journal of Geological Society of India, 55(1), 1–15.

    Google Scholar 

  • Ghosh, S. K., Kumar, R., & Suresh, N. (2003). Influence of Mio-Pliocene drainage re-organisation in the detrital modes of sandstone, Subathu sub-basin, Himalayan Foreland Basin. Himalayan Geology, 24(1), 35–46.

    Google Scholar 

  • Harrison, T. M., Lovera, O. M., & Grove, M. (1997). New insights into the origin of two contrasting Himalayan granite belts. Geology, 25, 899–902. https://doi.org/10.1130/0091-7613(1997)025%3c0899:NIITOO%3e2.3.CO;2

    Article  Google Scholar 

  • Hayashi, K. I., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador. Canada. Geochimica Et Cosmochimica Acta, 61, 4115–4137. https://doi.org/10.1016/s0016-7037(97)00214-7

    Article  Google Scholar 

  • Heim, A., & Gansser, A. (1939). Central Himalaya: Geological observations of the Swiss expedition 1936 (p. 246). Gebruder Fretz.

    Google Scholar 

  • Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core of log data. Journal of Sedimentary Petrology, 58, 820–829.

    Google Scholar 

  • Hussain, F. M., & Bharali, B. (2019). Whole-rock geochemistry of Tertiary sediments of Mizoram Foreland basin, NE India: Implications for source composition, tectonic setting and sedimentary processes. Acta Geochim, 38(6), 897–914. https://doi.org/10.1007/s11631-019-00315-3

    Article  Google Scholar 

  • Huyghe, P., Galy, A., Mugnier, J. L., & France-Lanord, C. (2001). Propagation of the thrust system and erosion in the Lesser Himalaya: Geochemical and sedimentological evidence. Geology, 29, 1007–1010. https://doi.org/10.1130/0091-7613(2001)029%3c1007:POTTSA%3e2.0.CO;2

    Article  Google Scholar 

  • Ingersoll, R. V., & Suczek, C. A. (1979). Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218. Journal of Sedimentary Petrology, 49, 1217–1228. https://doi.org/10.1306/212F78F1-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Islam, R., Ahmad, T., & Khanna, P. P. (2005). An overview on the granitoids of the NW Himalaya. Himalayan Geology, 26(1), 49–60.

    Google Scholar 

  • Jayangondaperumal, R., Thakur, V. C., Joevivek, V., Priyanka, R. S., & Gupta, A. K. (2018). Active tectonics of Kumaun and Garhwal Himalaya (p. 150). Springer.

    Book  Google Scholar 

  • Khan, T., Srinivasa Sarma, D., & Shamim Khan, M. (2020). Geochemical study of the Neoproterozoic clastic sedimentary rocks of the Khambal Formation (Sindreth Basin), Aravalli Craton, NW Indian Shield: Implications for paleoweathering, provenance, and geodynamic evolution. Geochemistry, 80, 125596. https://doi.org/10.1016/j.chemer.2019.125596

    Article  Google Scholar 

  • Khan, T., Srinivasa Sarma, D., Somasekhar, V., Ramaniah, S., & Ramakrishna Reddy, N. (2019). Geochemistry of the Palaeoproterozoic quartzites of Lower Cuddapah Supergroup, South India: Implications for the palaeoweathering, provenance, and crustal evolution. Geological Journal, 2019, 1–25. https://doi.org/10.1002/gj.3489

    Article  Google Scholar 

  • Khanna, P. P., Saini, N. K., Mukherjee, P. K., & Purohit, K. K. (2009). An appraisal for ICP-MS technique for determination of REEs: Long term QC assessment of silicate rock analysis. Himalayan Geology, 30(1), 95–99.

    Google Scholar 

  • Kohn, M. J., Paul, S. K., & Corrie, S. L. (2010). The lower Lesser Himalayan sequence: A Paleoproterozoic arc on the northern margin of the Indian plate. Geological Society of America Bulletin, 122(3–4), 323–335. https://doi.org/10.1130/b26587.1

    Article  Google Scholar 

  • Krynine, P. D. (1940). Petrology and genesis of the third Bradford sand (Vol. 29, p. 134). Pennsylvania Statistic College.

    Google Scholar 

  • Kumar, R., Ghosh, S. K., Sangode, S. J., & Phadtare, N. R. (1999). Evolution of the Plio-Pleistocene contrasting alluvial fans in the Siwalik Foreland Basin, NW Himalaya, India. In A. K. Jain & R. Manickavasagam (Eds.), Geodynamics of the NW Himalaya (Vol. 6, pp. 296–304). Gondvana Research Group Memoirs.

    Google Scholar 

  • Kumar, R., & Kotiyal, P. L. (1993). Quaternary Geology and Geoomorphology of Pilibhit-Khatima area of Ganga Basin in parts of Bareilly, Nainital and Pilibhit District, Uttar Pradesh. Unpublished Report Geological Survey of India Field Season 1992-1993, p. 54.

    Google Scholar 

  • LeFort, P. (1975). Himalayas—collided range—present knowledge of continental arc. American Journal of Sciences, A275, 1–44.

    Google Scholar 

  • LeFort, P. (1988). Granite in the tectonic evolution of Himalaya, Karakoram and southern Tibet. Tectonic evolution of the Himalayas and Tibet. Philosophical Transactions of Royal Society, London, 326, 281–299. https://doi.org/10.1098/rsta.1988.0088

    Article  Google Scholar 

  • LeFort, P. (1996). Evolution of the Himalaya. In A. Yin & T. M. Harrison (Eds.), The tectonics of Asia (pp. 95–106). Cambridge University Press.

    Google Scholar 

  • Lucas-Tooth, H. J., & Pyne, C. (1964). The accurate determination of major constituents by X-ray fluorescent analysis in the presence of large interelement effects. Advances in X-ray Analysis, 7, 523–541.

    Article  Google Scholar 

  • Macfarlane, A. M., Hodges, K. V., & Lux, D. (1992). A structural analysis of the Main Central Thrust zone, Langtang National Park, central Nepal Himalaya. Geological Society of America Bulletin, 104(11), 1389–1402. https://doi.org/10.1130/0016-7606(1992)104%3c1389:ASAOTM%3e2.3.CO;2

    Article  Google Scholar 

  • Mack, G. H., & Suttner, L. J. (1977). Paleoclimate interpretation from petrographic comparison of Holocene sands and the Fountain Formation (Pennsylvanian) in the Colorado Front Range. Journal of Sedimentary Petrology, 47, 89–100.

    Google Scholar 

  • Mandal, S. K., Scherler, D., Romer, R. L., Burg, J., Guillong, M., & Schleicher, A. M. (2018). Multiproxy Isotopic and geochemical analysis of the Siwalik sediments in NW India: Implication for the late Cenozoic tectonic evolution of the Himalaya. Tectonics, 38, 120–143. https://doi.org/10.1029/2018TC005200

    Article  Google Scholar 

  • Maynard, J. B., Valloni, R., & Yu, H. S. (1982). In sedimentation and tectonics on modern and ancient active plate margins (pp. 551–561). Blackwell Scientific.

    Google Scholar 

  • McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Geochemistry and Mineralogy of Rare Earth Elements Reviews Mineralogy, 21, 169–200. https://doi.org/10.1515/9781501509032-010

    Article  Google Scholar 

  • McLennan, S. M. (2001). Relationship between trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2000GC000109

    Article  Google Scholar 

  • McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance and tectonics. Geological Society of America Special Paper, 284, 295–303. https://doi.org/10.1130/SPE284-p21

    Article  Google Scholar 

  • McLennan, S. M., Nance, W. B., & Taylor, S. R. (1980). Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust. Geochimica Et Cosmochimica Acta, 44(11), 1833–1839. https://doi.org/10.1016/0016-7037(80)90232-X

    Article  Google Scholar 

  • Mehta, J. S. (1993). Final report on I and S granites of Almora, Binsar, Mukteshwar, Champawat, Ramgarh and Amritpur Area, Almora, Pithoragarh and Nainital districts, U.P. Geological Survey of.India Unpublished Report for F.S. 1988–93, p. 101.

  • Miall, A. D. (1996). The geology of fluvial deposits (p. 582). Springer.

    Google Scholar 

  • Myrow, P. M., Hughes, N. C., Paulsen, T., Williams, I., Parcha, S. K., Thompson, K. R., Bowring, S. A., Peng, S.-C., & Ahluwalia, A. D. (2003). Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth and Planetary Science Letters, 212, 433–441. https://doi.org/10.1016/S0012-821X(03)00280-2

    Article  Google Scholar 

  • Najman, Y. (1995). Evolution of the early Himalayan foreland basin in NW India and its relationship to Himalayan orogenesis. PhD Thesis. Edinburgh University, 1–307.

  • Najman, Y. (2006). The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth Science Review, 74, 1–72. https://doi.org/10.1016/j.earscirev.2005.04.004

    Article  Google Scholar 

  • Najman, Y., & Garzanti, E. (2000). An integrated approach to provenance studies: Reconstructing early Himalayan paleogeography and tectonic evolution from Tertiary foredeep sediments, N. India. Geological Society of America Bulletin, 112, 435–449.

    Article  Google Scholar 

  • Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica Et Cosmochimica Acta, 38, 757–775. https://doi.org/10.1016/0016-7037(74)90149-5

    Article  Google Scholar 

  • Nance, W. B., & Taylor, S. R. (1976). Rare earth element pattern and crustal evolution: I. Australian post-Archean sedimentary rocks. Geochimica Et Cosmochimica Acta, 40, 1539–1551. https://doi.org/10.1016/0016-7037(76)90093-4

    Article  Google Scholar 

  • Nesbitt, H. W., Markovics, G., & Price, R. C. (1980). Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica Et Cosmochimica Acta, 44(11), 1659–1666. https://doi.org/10.1016/0016-7037(80)90218-5

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Et Cosmochimica Acta, 48, 1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3

    Article  Google Scholar 

  • Nockolds, S. R., & Allen, R. (1956). The geochemistry of some igneous rock series-III. Geochimica Et Cosmochimica Acta, 9, 34–77. https://doi.org/10.1016/0016-7037(56)90056-4

    Article  Google Scholar 

  • Palmer, H. S. (1916). Nomographic solutions of certain stratigraphic measurements. Economic Geology, 11, 14–29.

    Article  Google Scholar 

  • Passchier, C. W., & Trouw, R. A. J. (1995). Microtectonics. Springer-Verleg.

    Google Scholar 

  • Pettijohn, F. J., Potter, P. E., & Siever, R. (1973). Sand and sandstone (p. 618). Springer-Verlag.

    Book  Google Scholar 

  • Potter, P. E., Maynard, J. B., & Depetris, P. J. (2005). Mud and mudstones (p. 297). Springer.

    Book  Google Scholar 

  • Raina, B. N. & Dungrakoti, B. D. (1965). Report on the study of Bhowali Traps of U.P. Himalaya. Unpublished Report Geological Survey of India Field Season 1964–1965, p. 42.

  • Ranjan, N., & Banerjee, D. M. (2009). Central Himalayan crystallines as the primary source for the sandstone-mudstone suites of the Siwalik Group: New geochemical evidence. Gondwana Research, 16, 687–696. https://doi.org/10.1016/j.gr.2009.07.005

    Article  Google Scholar 

  • Rao, D. R., & Sharma, R. (2009). Petrogenesis of the granitoid rocks from Askot Crystallines Kumaun Himalaya. Journal of Geological Society of India, 73, 553–566.

    Google Scholar 

  • Rao, D. R., & Sharma, R. (2011). Arc magmatism in eastern Kumaun Himalaya, India: A study based on geochemistry of granitoid rocks. Island Arc, 20, 500–519. https://doi.org/10.1111/j.1440-1738.2011.00781.x

    Article  Google Scholar 

  • Roddaz, M., Baby, P., Brusset, S., Hermoza, W., & Darrozes, J. M. (2005). Forebulge dynamics and environmental control in Western Amazonia: The case study of the Arch of Iquitos (Peru). Tectonophysics, 399, 87–108.

    Article  Google Scholar 

  • Roddaz, M., Viers, J., Brusset, S., Baby, P., Boucayrand, C., & Herail, G. (2006). Controls on weathering and provenance in the Amazonian foreland basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments. Chemical Geology, 226, 31–65.

    Article  Google Scholar 

  • Rollinson, H. (1993). Using geochemical data: Evaluation, presentation, interpretation (p. 352). Longman Scientific and Technical.

    Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone-mudstone suits using SiO2 and K2O/Na2O ratio. Journal of Geology, 94, 635–650. https://doi.org/10.1086/629071

    Article  Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1999). Geochemical characterization, evolution and source of a Mesozoic accretionary wedge: The Torlesse terrane, New Zealand. Geological Magazine, 136(5), 493–512. https://doi.org/10.1017/S0016756899003003

    Article  Google Scholar 

  • Roy, D. K., & Roser, B. P. (2013). Geochemical evolution of the Tertiary succession of the NW shelf, Bengal basin, Bangladesh: Implications for provenance, paleoweathering and Himalayan erosion. Journal of Asian Earth Sciences, 78, 248–262. https://doi.org/10.1016/j.jseaes.2013.04.045

    Article  Google Scholar 

  • Sawant, S. S., Vijay Kumar, K., Balaram, V., Subba Rao, D. B., Rao, K. S., & Tewari, R. P. (2017). Geochemistry and genesis of craton-derived sediments from active continental margins: Insights from the Mizoram Foreland basin, NE India. Chemical Geology, 470, 13–32.

    Article  Google Scholar 

  • Saxena, A. (1975). Geology of parts of Champawat Tehsil, District Pithoragarh, U.P. Unpublisehd Report Geological Survey of India Field Season 1974–75, p. 28.

  • Saxena, A. (1978). Geology of the area in parts of Champawat Tehsil, District Pithoragarh, Uttar Pradesh. Unpublisehd Report Geological Survey of India Field Season 1977–78, p. 24.

  • Schwab, F. L. (1986). Sedimentary ‘signatures’ of foreland basin assemblages: Real or counterfeit? In P. A. Allen & P. Homewood (Eds.), Foreland Basins (Vol. 8, pp. 395–410). Special Publicaiton of International Association of Sedimentologist.

    Google Scholar 

  • Searle, M. P., Law, R. D., Godin, L., Larson, K., Streule, M. J., Cottle, J. M., & Jessup, M. J. (2008). Defining the Himalayan Main Central Thrust in Nepal. Journal of Geological Society, London, 165, 523–534.

    Article  Google Scholar 

  • Sharma, R., Gupta, V., Arora, B. R., & Sen, K. (2011). Petrophysical properties of the Himalayan granitoids: Implication on composition and source. Tectonophysics, 497, 23–33. https://doi.org/10.1016/j.tecto.2010.10.016

    Article  Google Scholar 

  • Singh, G. & Kothiyal, P. L. (1997). Quaternary geological and geomorphological studies in parts of Ramganga (East) Sub basin of Kali basin, Pithoragarh District, Uttar Pradesh. Geological Survey of India Unpublished Report. for field season 1996–1997.

  • Sinha, S., Ghosh, S. K., Kumar, R., Islam, R., Sanyal, P., & Sangode, S. J. (2008). Role of tectono-climatic factors in the Neogene Himalayan Foreland sediments: Petrology and geochemical approach, Kangra Sub-basin. Journal of Geological Society of India, 71, 787–807.

    Google Scholar 

  • Sinha, S., Islam, R., Ghosh, S. K., Kumar, R., & Sangode, S. J. (2007). Geochemistry of Neogene Siwalik mudstones along Punjab re-entrant, India: Implications for source-area weathering, provenance and tectonic setting. Current Science, 92(8), 1103–1113.

    Google Scholar 

  • Sinha, S., Sangode, S. J., Kumar, R., & Ghosh, S. K. (2005). Accumulation history and tectonic significance of the Neogene continental deposits in the west central sector of the Himalayan foreland basin. Himalayan Geology, 26(2), 387–408.

    Google Scholar 

  • Tandon, S. K., & Varshney, S. K. (1991). Origin of selective carbonate cemented (concretionary) layers within multistoried sandstone bodies of the Neogene Middle Siwalik Subgroup, NW Himalaya, India. Abstract, Birbal Sahni Birth Centenary Symposium on the Siwalik Basin, WIHG, Dehra Dun, India, 45.

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: A new table. Geochimica Et Cosmochimica Acta, 28(8), 1273–1285. https://doi.org/10.1016/0016-7037(64)90129-2

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution (p. 312). Blackwell.

    Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265. https://doi.org/10.1029/95RG00262

    Article  Google Scholar 

  • Thakur, V. C. (1992). Geology of Western Himalaya (p. 363). Pergamon Press.

    Google Scholar 

  • Thakur, V. C. (2013). Active tectonics of Himalayan frontal fault system. International Journal of Earth Science (Geol Rundsch), 102, 1791–1810. https://doi.org/10.1007/s00531-013-0891-7

    Article  Google Scholar 

  • Turekian, K. T. (1963). The chromium and nickel distribution in basaltic rocks and eclogites. Geochimica Et Cosmochimica Acta, 27, 835–846. https://doi.org/10.1016/0016-7037(63)90046-2

    Article  Google Scholar 

  • Ulak, P. D., Roser, B., & Zakir Hossain, H. M. (2008). Major and trace element analyses of sandstones and mudstones from the Siwalik Group, Bakiya Khola, central Nepal. Geoscience Reports, Shimane University, 27, 43–51.

    Google Scholar 

  • Valdiya, K. S. (1970). Simla slates: The Precambrian Flysch of the Lesser Himalaya, its turbidites, sedimentary structures and paleocurrents. Geological Society of America Bulletin, 81(2), 451–468.

    Article  Google Scholar 

  • Valdiya, K. S. (1980). Geology of Kumaun Lesser Himalaya (p. 289). Wadia Institute of Himalayan Geology.

    Google Scholar 

  • Valdiya, K. S. (1999). Rising Himalaya: Advent and intensification of monsoon. Current Science, 76(4), 514–524.

    Google Scholar 

  • Van Der Beek, P., Robert, X., Mugnier, J. L., Bernet, M., Huyghe, P., & Labrin, E. (2006). Late Miocene—recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission-track thermochronology of Siwalik sediments, Nepal. Basin Research, 18, 413–434. https://doi.org/10.1111/j.1365-2117.2006.00305.x

    Article  Google Scholar 

  • Vinogradov, A. P. (1962). Average contents of chemical elements in the major types of terrestrial igneous rocks. Geokhimiya, 7, 555–571.

    Google Scholar 

  • Visser, J. N. J., & Young, G. M. (1990). Major element geochemistry and paleoclimatology of the Permo-Carboniferous glacigene Dwyka Formation and postglacial mudrocks in southern Africa. Palaeogeography Palaeoclimatology Palaeoecology, 81(1–2), 49–57. https://doi.org/10.1016/0031-0182(90)90039-a

    Article  Google Scholar 

  • Wesnousky, S. G., Kumar, S., Mohindra, R., & Thakur, V. C. (1999). Uplift and convergence along the Himalayan frontal thrust of India. Tectonics, 18(6), 967–976. https://doi.org/10.1029/1999TC900026

    Article  Google Scholar 

  • Whitney, D. N., & Evans, B. W. (2010). Abbreviations of names of rock forming minerals. American Mineralogist, 95, 185–187. https://doi.org/10.2138/AM.2010.3371

    Article  Google Scholar 

  • Willis, K. M., Stern, R. J., & Clauer, N. (1988). Age and geochemistry of Late Precambrian sediments of the Hammamat Series from the Northeastern Desert of Egypt. Precambrian Research, 42, 173–187. https://doi.org/10.1016/0301-9268(88)90016-2

    Article  Google Scholar 

  • Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica Et Cosmochimica Acta, 51, 2401–2416. https://doi.org/10.1016/0016-7037(87)90293-6

    Article  Google Scholar 

  • Yin, A. (2006). Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Science Review, 76, 1–131. https://doi.org/10.1016/j.earscirev.2005.05.004

    Article  Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms and aberrations in global climate 65 Ma to present. Science, 292, 686–693. https://doi.org/10.1126/science.1059412

    Article  Google Scholar 

Download references

Acknowledgements

The present work is part of the approved Field Season Program of Geological Survey of India Northern Region during F.S. 2015-16 and has been funded under item code: STM/NR/UK/2015/002. The HOD, GSI NR and Dy. D.G., SU: UK are thanked to provide the necessary facility to carry out this work. Publication Division, GSI NR is thankfully acknowledged for arranging the review and permission to communicate this manuscript. The authors convey their sincere thanks to the Chemical Division and Petrology Division, GSI NR for providing chemical analysis and petrographic slides, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh S. Chauhan.

Ethics declarations

Conflict of interest

There is no direct–indirect financial or non-financial competing interest related with the present manuscript with any person or organization.

Additional information

Communicated by M. V. Alves Martins

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, D.S., Chauhan, R. & Singh, B. Provenance composition, paleo-weathering and tectonic setting of Himalayan foreland basin sediments, Kumaun Sub-Himalaya, India. J. Sediment. Environ. 7, 471–499 (2022). https://doi.org/10.1007/s43217-022-00106-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-022-00106-6

Keywords

Navigation