Skip to main content
Log in

Geology, petrology, and geochemistry of the Mesoproterozoic Kaimur Group of rocks of the Vindhyan Supergroup, Eastern India: implications for depositional environment and sequence stratigraphy

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

This study aims to present the three mappable lithounits of the Ghaghar Formation of the Kaimur Group, which have been reported for the first time in the eastern part of the Vindhyan basin exposed in Kaimur district, Bihar, India. These litho-units are coarse to medium-grained sandstone (Facies-A), fine to medium-grained sandstone, with intercalated siltstone (Facies-B), and medium to coarse-grained sandstone (Facies-C). Mineralogically and geochemically these units are sub-lithic arenite and arkose in composition. Based on heavy mineral assemblages, presence of rock fragments, and paleocurrent direction, the possible sources are presumed to be the Chhotanagpur Gneissic Complex and the Mahakoshal Group of rocks, which lie towards the south and south-west. The Ghaghar Formation shows low concentrations of Na2O, TiO2, MgO, CaO, Cu, Co, Pb, Th, and Nb with high concentrations of Ba, Cr, Zr, Y, and V. REE plot shows flat LREE and HREE along with the values of (La/Sm)N, (La/Yb)N and (Gd/ Yb)N, and Eu anomaly allows us to deduce that the sediments were mainly sourced from felsic igneous rocks, such as granites. In binary diagrams, all the samples predominantly come in the field of passive margin tectonic setting except a few samples, which fall in the fields of the active continental margin and continental island arc. Besides, the detailed field observations and sedimentological studies were carried out in facies-A and facies-B based on the concept of Sequence Stratigraphy. It is assumed that the facies-A is presumably to be formed in Lowstand System Tract. The combination of two processes Transgressive System Tract and the Highstand System Tract are responsible for the formation of facies-B. Thus, on the above-mentioned observations, it may be indicated that the beach, sub-tidal to inter-tidal environments were responsible for the deposition of these siliciclastic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request. All the aforesaid mentioned datasets are not publicly available due to the policy of the parent organization i.e. the Geological Survey of India but are available from the corresponding author on reasonable request.

References

  • Ahmad, A. H. M., Rao, L. A. K., Majid, A., & Kaur, H. (2009). Depositional environment, provenance and diagenesis of Patherwa Formation Sandstone detrital quartz for provenance interpretation. Journal of Sedimentary Petrology, 45, 873–882.

    Google Scholar 

  • Akhtar, K., Khan, M. M., & Ahmad, A. H. M. (1994). Petrofacies, provenance and tectonic setting of Nimar Sandstone (Lower Cretaceous), Rajpipla-Jobat area. Journal of the Geological Society of India, 44, 532–539.

    Google Scholar 

  • Akarish, A. I. M., & EL-Gohary, A. M. (2011). Provenance and source area weathering derived from the geochemistry of Pre-Cenomanian sandstones, east Sinai, Egypt. Journal of Applied Science, 11(17), 3070–3088.

    Article  Google Scholar 

  • Allen, J. R. L. (1980). Sand waves: A model of origin and internal structures. Sedimentary Geology, 26, 281–328.

    Article  Google Scholar 

  • Auden, J. B. (1933). Vindhyan sedimentation in the Sone Valley, Mirzapur District. Memoirs of the Geological Survey of India, 62(2), 141–250.

    Google Scholar 

  • Azmi, R. J., Joshi, D., Tiwari, B. N., Joshi, M. N., Mohan, K., & Srivastava, S. S. (2007). Age of the Vindhyan supergroup of Central India: An exposition of biochronology vs. geochronology. In D. Sinha (Ed.), Micropaleontology: Application in stratigraphy and paleoceanography (pp. 29–62). Narosa Publishing House.

    Google Scholar 

  • Banerjee, I. (1974). Barrier coastline sedimentation model and the Vindhyan example. Journal of the Geological, Mining and Metallurgical Society of India, (golden Jubilee), 46, 101–127.

    Google Scholar 

  • Bengtson, S., Sallstedt, T., Belivanova, V., & Whitehouse, M. (2017). Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion year-old crown-group red algae. PLOS Biology. https://doi.org/10.1371/journal.pbio.2000735

    Article  Google Scholar 

  • Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91, 611–627.

    Article  Google Scholar 

  • Bhatia, M. R., & Crook, K. W. (1986). Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.

    Article  Google Scholar 

  • Bhattacharyya, A., & Morad, S. (1993). Proterozoic braided ephemeral fluvial deposits: An example from the Dhandraul Sandstone Formation of the Kaimur Group, Sone Valley, Central India. Sedimentary Geology, 84, 101–114.

    Article  Google Scholar 

  • Bose, P. K., Sarkar, S., Chakrabarty, S., & Banerjee, S. (2001). Overview of the Meso to Neoproterozoic evolution of the Vindhyan basin, central India. Sedimentary Geology, 141, 395–419.

    Article  Google Scholar 

  • Brown, L. F., Jr., & Fisher, W. L. (1977). Seismic stratigraphic interpretation of depositional systems: examples from Brazilian rift and pull apart basins. In C. E. Payton (Ed.), Seismic stratigraphy—Applications to hydrocarbon exploration (Vol. 26, pp. 213–248). American Association of Petroleum Geologists Memoirs.

    Google Scholar 

  • Chakraborty, C. (2006). Proterozoic intracontinental basin; The Vindhyan example. Journal of Earth System Science, 15(1), 3–22.

    Article  Google Scholar 

  • Chakraborty, C., & Bose, P. K. (1992). Rhythmic shelf storm beds: Proterozoic Kaimur Formation, India. Sedimentary Geology, 77, 249–268.

    Article  Google Scholar 

  • Chakrabarty, R., Basu, A. R., & Chakrabarty, A. (2007). Trace element and Nd isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan basin, Central India. Precambrian Research, 159, 260–274.

    Article  Google Scholar 

  • Deb, M., Thorpe, R., & Krstic, D. (2002). Hindoli Group of rocks in the Eastern Fringe of the Aravalli-Delhi Orogenic belt-Archean secondary greenstone belt or Proterozoic supracrustals? Gondwana Research, 5, 879–883.

    Article  Google Scholar 

  • Dickinson, W. R. (1970). Interpreting detrital modes of greywacke and arkose. Journal of Sedimentary Petrology, 40, 695–707.

    Google Scholar 

  • Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In G. G. Zuffa (Ed.), Provenance of Arenites (pp. 231–247). Reidel Publishing Company.

    Google Scholar 

  • Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone compositions. American Association of Petroleum Geologists Bulletin, 63, 2164–2182.

    Google Scholar 

  • Dutta, B. (2005). Provenance, tectonics and palaeoclimate of Proterozoic Chandarpur sandstones, Chattisgarh basin: A petrographic view. Journal of Earth System Science, 114, 227–245.

    Article  Google Scholar 

  • Embry, A. F. (2001). Sequence stratigraphy: what it is, why it works and how to use it. Reservoir, (canadian Society of Petroleum Geologists), 28(8), 15.

    Google Scholar 

  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols with implications for paleoweathering conditions and provenance. Geology, 23(10), 921–924.

    Article  Google Scholar 

  • Floyd, P. A., Winchester, J. A., & Park, R. G. (1989). Geochemistry and tectonic setting of Lewisian clastic metasediments from early Proterozoic Loch Maree Group of Gairloch, N.W, Scotland. Precambrian Research, 45(1–3), 203–214.

    Article  Google Scholar 

  • Galloway, W. E. (1989). Genetic stratigraphic sequences in basin analysis. I. Architecture and genesis of flooding-surface bounded depositional units. American Association of Petroleum Geologists Bulletin, 73, 125–142.

    Google Scholar 

  • Ghazi, S., & Mountney, N. P. (2011). Petrography and provenance of the Early Permian Fluvial Warchha Sandstone, Salt Range, Pakistan. Sedimentary Geology, 233, 88–110.

    Article  Google Scholar 

  • Ghosh, S., Sarkar, S., & Ghosh, P. (2012). Petrography and major element geochemistry of the Permo Triassic sandstones, central India: Implications for provenance in an intracratonic pull-apart basin. Journal of Asian Earth Sciences, 43, 207–240.

    Article  Google Scholar 

  • Gopalan, K., Kumar, S., & Vijayagopala, B. (2013). Depositional history of the Upper Vindhyan succession, central India: Time constraints from Pb- Pb isochron ages of its carbonate components. Precambrian Research, 233, 108–117.

    Article  Google Scholar 

  • Gupta, S., Jain, K. C., Srivastava, V. C., & Mehrotra, R. D. (2003). Depositional environment and tectonism during the sedimentation of the Semri and Kaimur Groups of rocks, Vindhyan Basin. Journal of Paleontological Society of India, 48, 181–190.

    Google Scholar 

  • Harms, J. C., Southard, J. B., & Walker, R. G. (1982). Structures and sequences in clastic rocks. Society of Economic Paleontologists and Mineralogists, Short Course Notes, 9, 18–51.

    Google Scholar 

  • Hayashi, K. I., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica Et Cosmochimica Acta, 61, 4115–4137.

    Article  Google Scholar 

  • Jafar, S. A., Akhtar, K., & Srivastava, V. K. (1966). Vindhyan paleocurrents and their bearing on the northern limit of the Vindhyan sedimentation—A preliminary note. Bulletin of the Geological Society of India, 3, 82–84.

    Google Scholar 

  • Kale, V. S., & Phansalkar, V. G. (1991). Purana basins of peninsular India: A review. Basin Research, 3, 1–36.

    Article  Google Scholar 

  • Kroonenberg, S. B. (1994). Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. In Proceedings of the 29th international geological congress, Part A (pp. 69–81).

  • Malone, S. J., Meert, J. G., Banerjee, D. M., Pandit, M. K., Tamrat, E., Kamenov, G. D., Pradhan, V. R., & Sohl, L. E. (2008). Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India: A ca. 1000 Ma closure age for the Purana Basins? Precambrian Research, 164, 137–159.

    Article  Google Scholar 

  • Maynard, J. B. (1992). Chemistry of modern solis as a guide to interpreting precambrian paleosols. Journal of Geology, 100, 279–289.

    Article  Google Scholar 

  • McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Journal of Geochemistry, Geophysics and Geosystematics, 2, C000109.

    Google Scholar 

  • McLennan, S. M., & Taylor, S. R. (1991). Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. Journal of Geology, 99, 1–21.

    Article  Google Scholar 

  • Mishra, M., & Sen, S. (2008). Geochemistry of sandstone and shales from Kaimur Group, Sone valley, Central India: Implications for provenance, tectonic setting and palaeoenvironment. Terrestrial planets evolution through time held (pp. 208–209). Ahmedabad: Physical Research Laboratory.

    Google Scholar 

  • Mishra, M., & Sen, S. (2010). Geochemical signatures of Mesoproterozoic siliciclastic rocks of Kaimur Group, Vindhyan Supergroup, Central India. Chinese Journal of Geochemistry, 29(1), 21–31.

    Article  Google Scholar 

  • Mishra, M., & Sen, S. (2012). Provenance, tectonic setting and source-area weathering of Mesoproterozoic Kaimur Group, Vindhyan Supergroup, Central India. Geological Acta, 10, 283–294.

    Google Scholar 

  • Mowbray, T. D., & Visser, M. J. (1984). Reactivation surfaces in subtidal channel deposits, Oosterschelde, southwest Netherlands. Journal of Sedimentary Petrology, 54, 811–824.

    Google Scholar 

  • Morad, S., Battacharya, A., & Al-Aasam, L. S. (1991). Daigenesis of quartz in Late Proterozoic Kaimur Sandstones, Sone Valley, India. Journal of Sedimentary Geology, 73, 209–225.

    Article  Google Scholar 

  • Naqvi, S. M., Narayana, B. L., Rama Rao, R., Ahmad, S. M., & Udai Raj, B. (1980). Geology and geochemistry of the paragneisses from Jawanahalli schist belt, Karnataka, India. Journal of the Geological Society of India, 21, 577–592.

    Google Scholar 

  • Nesbitt, H. W., Markovics, G., & Price, R. C. (1980). Chemical processes affecting alkalies and alkaline earths during continental weathering. Geochimica Et Cosmochimica Acta, 44, 1659–1666.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Et Cosmochimica Acta, 48(7), 1523–1534.

    Article  Google Scholar 

  • Nesbitt, H. W., McLennan, S. M., & Keays, R. R. (1996). Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments with implications for provenance studies. Journal of Geology, 104(5), 525–542.

    Article  Google Scholar 

  • Paikaray, S., Banerjee, S., & Mukherji, S. (2008). Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup, implications on provenance, tectonics and paleoweathering. Journal of Asian Earth Science, 32, 34–48.

    Article  Google Scholar 

  • Pettijohn, F. J., Potter, P. E., & Siever, R. (1972). Sand and sandstones (p. 619). Springer.

    Google Scholar 

  • Perri, F. (2014). Composition, provenance and source weathering of Mesozoic sandstones from Western-Central Mediterranean Alpine Chains. Journal of African Earth Science, 91, 32–43.

    Article  Google Scholar 

  • Posamentier, H. W., & Allen, G. P. (1999). Siliciclastic sequence stratigraphy: Concepts and applications. SEPM Concepts in Sedimentology and Paleontology, 7, 210.

    Google Scholar 

  • Posamentier, H. W., Jervey, M. T., & Vail, P. R. (1988). Eustatic controls on clastic deposition. I. Conceptual framework. In C. K. Wilgus, B. S. Hastings, C. G. S. C. Kendall, H. W. Posamentier, C. A. Ross, & J. C. Van Wagoner (Eds.), Sea level changes—An integrated approach (Vol. 42, pp. 110–124). SEPM Special Publication.

    Google Scholar 

  • Potter, P. E., & Pettijohn, F. J. (1977). Palaeocurrents and basin analysis. Academic Press.

    Book  Google Scholar 

  • Prakash, O., & Kumar, Y. (1980). A report on the systematic geological mapping in parts of Rohtas district, Bihar. Unpublished report of the Geological Survey of India, F.S. 1975–1976.

  • Prakash, O., Kumar, Y., & Singh, K. P. (1979). Report on the systematic geological mapping in parts of Rohtas district, Bihar. Unpublished report of the Geological Survey of India, F.S. 1974–1975.

  • Prakash, R., & Dalela, I. K. (1982). Stratigraphy of the Vindhyan in Uttar Pradesh: A brief review. In K. S. Valdiya, S. B. Bhatia, & V. K. Gaur (Eds.), Geology of Vindhyanchal (pp. 55–79). Hindustan Publishing Corporation.

    Google Scholar 

  • Prasad, B. (1984). Geology, sedimentation and paleogeography of the Vindhyan Supergroup, S.W. Rajasthan. Memoirs of the Geological Survey of India, 116(1), 1–107.

    Google Scholar 

  • Prasad, B., & Verma, K. K. (1991). Vindhyan basin: A review. In S. K. Tandon, C. C. Pant, & S. M. Casshyap (Eds.), Sedimentary basins of India: Tectonic context (pp. 50–62). Gyanodaya Prakasan.

    Google Scholar 

  • Quasim, M. A., Ahmad, A. H. M., Sachan, H. K., & Ghosh, S. K. (2019). Recrystallization and provenance history of the Upper Kaimur Group Siliciclastics, Sone Valley, India: Coupled petrographic and fluid inclusion Proxy. Journal of the Geological Society of India, 93, 177–184.

    Article  Google Scholar 

  • Quasim, M. A., Imran, K., & Ahmad, A. H. M. (2017). Integrated petrographic, mineralogical, and geochemical study of the Upper Kaimur Group of Rocks, Sone Valley, India: Implications for provenance, source area weathering and tectonic setting. Journal of the Geological Society of India, 90, 467–484.

    Article  Google Scholar 

  • Rasmussen, B., Bose, P. K., Sarkar, S., Banerjee, S., Fletcher, I. R., & McNaughton, N. J. (2002). 1.6Ga U-Pb Zircon ages for the Chorhat sandstone, Lower Vindhyan, India: Possible implication for early evolution of animals. Geology, 30, 103–106.

    Article  Google Scholar 

  • Rajmanickam, V., Achyuthan, H., Eastoe, C., & Farooqui, A. (2016). Early-Holocene to present palaeoenvironmental shifts and short climate events from the tropical wetland and lake sediments, Kukkal Lake, Southern India: Geochemistry and palynology. The Holocene. https://doi.org/10.1177/0959683616660162

    Article  Google Scholar 

  • Ray, J. S. (2006). Age of the Vindhyan Supergroup: A review of recent findings. Journal of Earth System Science, 115, 149–160.

    Article  Google Scholar 

  • Ray, J. S., & Chakraborty, C. (2006). Vindhyan geology status and perspectives. Special Issue Journal of Earth System Science, 115(1), 183.

    Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.

    Article  Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone mudstone suites determined using discrimination function analysis of major element data. Chemical Geology, 67, 119–139.

    Article  Google Scholar 

  • Rudnick, R. L., & Gao, S. (2003). The composition of the continental crust. In R. L. Rudnick (Ed.), The crust, treatise on geochemistry (Vol. 3, pp. 1–64). Elsevier-Pergamon.

    Google Scholar 

  • Sarangi, S., Gopalan, K., & Kumar, S. (2004). Pb–Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: Implications for Precambrian atmospheric oxygen evolution. Precambrian Research, 132, 107–121.

    Article  Google Scholar 

  • Sastry, M. V. A., & Moitra, A. K. (1984). Vindhyan stratigraphy—A review. Memoirs of the Geological Survey of India, 116, 109–148.

    Google Scholar 

  • Sen, S. (2010). Geochemistry and Provenance of the siliciclastics from Kaimur Group, Vindhyan Supergroup, Mirzapur and Sonebhadra Districts, Uttar Pradesh, India. Ph.D thesis, Banaras Hindu University, Varanasi, p. 221.

  • Sen, S., Mishra, M., & Deb, S. P. (2014). Petrological study of the Kaimur Group sediments, Vindhyan Supergroup, Central India: Implications for provenance and tectonics. Geosciences Journal, 8(3), 307–324.

    Article  Google Scholar 

  • Sheldon, N. D., & Tabor, N. J. (2009). Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Science Review, 95, 1–52.

    Article  Google Scholar 

  • Singh, S. P., & Sinha, P. K. (1998). Vindhyan Supergroup of Bihar—An overview. Precambrian Crustal Evolution and Mineralisation in India. PCEM-2001, pp. 107–126.

  • Sloss, L. L., Krumbein, W. C., & Dapples, E. C. (1949). Integrated facies analysis. In: C. R. Longwell (Ed.), Sedimentary facies in geologic history (vol. 39, pp. 91–124). Geological Society of America Memoirs.

  • Soni, M. K., Chakraborty, S., & Jain, V. K. (1987). Vindhyan super group—A review. Memoirs of Geological Society of India, 6, 87–138.

    Google Scholar 

  • Srivastava, R. K., & Mehrotra, M. N. (1981). Sedimentological studies of Kaimur sandstones, Central Sone Valley region, India. Geological Society of India Miscellaneous Publication, 50, 109–120.

    Google Scholar 

  • Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Petrology, 56, 329–345.

    Google Scholar 

  • Verma, N. P., Reddy, K. K., & Singh, K. P. (1984). A report on the systematic geological mapping in parts of Rohtas district, Bihar. Unpublished report of the Geological Survey of India, F.S. 1979–1980.

  • Valloni, R., & Mezzardi, G. (1984). Compositional suites of terrigenous deep sea sands of the present continental margins. Sedimentology, 31, 353–364.

    Article  Google Scholar 

  • Wilson, B. (2010). A tidal depositional model for the Carolina sand (Pliocene, Talparo Formation) of central Trinidad. Caribbean Journal of Science, 46(1), 19–28.

    Article  Google Scholar 

  • Wronkiewicz, D. J., & Condie, K. C. (1989). Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0 Ga old continental craton. Geochimica Et Cosmochimica Acta, 53(7), 1537–1549.

    Article  Google Scholar 

  • Yadav, P. K., & Das, M. (2019). Specialised Thematic Mapping in parts of Bhagwanpur-Karar-Bahadag areas of Rohtas district, Bihar for a reappraisal of the Vindhyan stratigraphy and search for diamondiferous conglomerate horizons. Unpublished report of the Geological Survey of India, F.S. 2017–2019.

  • Yadav, P. K., & Das, M. (2021). Geology, structure and geochemical features of the laterites with anomalous Ti-V-Cr and REE of the Dhandraul Formation of the Vindhyan Supergroup, Eastern India. Journal of the Geological Society of India, 97(6), 603–614.

    Article  Google Scholar 

  • Yadav, P. K., Patel, D. K., & Dutta, S. K. (2022). Incidence of Sulphide Mineralization in Porcellanite of the Chopan Formation from the Vindhyan Supergroup, Eastern India. Journal of the Geological Society of India, 98(5), 1–6.

    Article  Google Scholar 

  • Yan, Y., Xia, B., Lin, G., Cui, X., Hu, X., Yan, P., & Zhang, F. (2007). Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary. Sedimentary Geology, 197, 127140.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are honestly obliged to the Director General, Geological Survey of India for according necessary permission to publish this manuscript. They are also thankful to the Deputy Director General, Geological Survey of India, SU: Bihar for cooperation, constant encouragement, guidance, and valuable suggestions during the work. Sincere thanks to Dr. Manish Kumar Yadav of the Geological Survey of India for providing the details of analytical techniques. This paper is the outcome of the Annual Field Season Programme (FSPMIS ID: M1AGS/STM/NC/ER/SU-BR/2017/20848) of the Geological Survey of India, State Unit: Bihar, Patna. The authors are also thankful to the anonymous reviewers and team of the editorial committee for their critical review along with beneficial comments and suggestions provided on a previous version of the manuscript has very much helped in improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar Yadav.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by M. V. Alves Martins

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K., Das, M. & Ray, S. Geology, petrology, and geochemistry of the Mesoproterozoic Kaimur Group of rocks of the Vindhyan Supergroup, Eastern India: implications for depositional environment and sequence stratigraphy. J. Sediment. Environ. 7, 443–469 (2022). https://doi.org/10.1007/s43217-022-00105-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-022-00105-7

Keywords

Navigation