Skip to main content

Advertisement

Log in

Proterozoic sandstone of Rajgarh Formation, Alwar sub-basin, Northeastern Rajasthan: sedimentological and paleo-hydrodynamical implications

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The Proterozoic Rajgarh Formation Sandstone, Alwar sub-basin, Northeastern Rajasthan, was studied utilising a range of methodologies, including sedimentary features such as grain size, shape, and characteristics of microtextures presented on the quartz grain surfaces (determined in Stereozoom Binocular microscope and scanning electron microscope). The representative samples of sandstone were collected from different locations to determine the transportation behaviour of the sediments and depositional environments on the basis of textural parameters such as mean size, sorting, skewness, and kurtosis along with microtextures presented on the surface of quartz grains. As per textural analysis, majority of the samples showing mean size ranging from coarse to medium sand (0.43–1.69 ϕ), sorting ranging from poorly to very well sorted (1.36–0.26 ϕ), skewness ranging from fine to very fine skewed (− 0.36–0.69) and kurtosis values ranging from platykurtic to very leptokurtic (0.84–1.71) size distribution. In the different textural plots, the samples are mainly distributed in river and beach field showing fluvial to shallow marine environments for the studied samples. The rolling process for sediment deposition in shallow marine environments is depicted in the C–M diagram. The superiority of marine environments with lesser fluvial deposition areas is indicated by the Linear Discriminant Function (LDF). The microtextures presented on the quartz grains indicating different physical and chemical processes caused by the sedimentary dynamics under fluvial to shallow marine environments. The grain size data interpretation of the hydrodynamic conditions evolution history is consistent with the sedimentary structures proofs of the studied area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

The authors presented the data from this work in the tables.

References

  • Abd-Alla, M. A. A. (1991). Surface textures of quartz grains from recent sedimentary environments along the Mediterranean Coast, Egypt. Journal of African Earth Sciences (and the Middle East), 13(3–4), 367–375. https://doi.org/10.1016/0899-5362(91)90100-D

    Article  Google Scholar 

  • Ahmad, F., Quasim, M. A., Ahmad, A. H. M., Rehman, S. M., & Asjad, S. (2021). Depositional mechanism of Fort Member Sandstone (Early–Late Bathonian), Jaisalmer Formation, Western Rajasthan: Insights from granulometric analysis. Geology, Ecology, and Landscapes, 5(2), 119–135. https://doi.org/10.1080/24749508.2020.1833642

    Article  Google Scholar 

  • Ahmad, F., Quasim, M. A., Ghaznavi, A. A., Khan, Z., & Ahmad, A. H. M. (2017). Depositional environment of the Fort Member of the Jurassic Jaisalmer Formation (western Rajasthan, India), as revealed from lithofacies and grain-size analysis. Geologica Acta, 15(3), 153–167. https://doi.org/10.1344/GeologicaActa2017.15.3.1

    Article  Google Scholar 

  • Al-Saleh, S., & Khalaf, F. I. (1982). Surface textures of quartz grains from various recent sedimentary environments in Kuwait. Journal of Sedimentary Research, 52(1), 215–225. https://doi.org/10.1306/212F7F18-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Armstrong-Altrin, J. S., & Natalhy-Pineda, O. (2014). Microtextures of detrital sand grains from the Tecolutla, Nautla, and Veracruz beaches, western Gulf of Mexico, Mexico: Implications for depositional environment and paleoclimate. Arabian Journal of Geosciences, 7(10), 4321–4333. https://doi.org/10.1007/s12517-013-1088-x

    Article  Google Scholar 

  • Campbell, S., & Thompson, I. C. (1991). The palaeoenvironmental history of late Pleistocene deposits at Moel Tryfan, North Wales: Evidence from scanning electron microscopy (SEM). Proceedings of the Geologists’ Association, 102(2), 123–134. https://doi.org/10.1016/S0016-7878(08)80071-5

    Article  Google Scholar 

  • Cheetham, M. D., Keene, A. F., Bush, R. T., Sullivan, L. A., & Erskine, W. D. (2008). A comparison of grain-size analysis methods for sand-dominated fluvial sediments. Sedimentology, 55(6), 1905–1913. https://doi.org/10.1111/j.1365-3091.2008.00972.x

    Article  Google Scholar 

  • Costa, P. J. M., Andrade, C., Dawson, A. G., Mahaney, W. C., Freitas, M. C., Paris, R., & Taborda, R. (2012). Microtextural characteristics of quartz grains transported and deposited by tsunamis and storms. Sedimentary Geology, 275, 55–69. https://doi.org/10.1016/j.sedgeo.2012.07.013

    Article  Google Scholar 

  • Essien, N. U., Ilori, A. O., Okon, E. E., & Njoku, S. N. (2016). Textural characteristics and depositional processes of sediments from a 47 km transect in the Niger Delta, Southern Nigeria. Journal of Geography, Environment and Earth Science International, 7(1), 1–11. https://doi.org/10.9734/JGEESI/2016/27919

    Article  Google Scholar 

  • Folk, R. L. (1968). Bimodal super mature sandstones: Product of the desert floor. In Proceedings of the 23rd International Geological Congress, Prague, vol. 8, pp. 9–32.

  • Folk, R. L. (1980). Petrology of sedimentary rocks (p. 159). Hemphill.

  • Folk, R. L., & Ward, W. C. (1957). Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1), 3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Friedman, G. M. (1958). Determination of sieve-size distribution from thin-section data for sedimentary petrological studies. Journal of Geology, 66, 394–416.

    Article  Google Scholar 

  • Friedman, G. M. (1967). Dynamic process and statistical parameters compared for size frequency distribution of beach and river sands. Journal of Sedimentary Petrology, 37, 327–354. https://doi.org/10.1306/74D716CC-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Ghaznavi, A. A., Quasim, M. A., Ahmad, A. H. M., & Ghosh, S. K. (2019). Granulometric and facies analysis of Middle–Upper Jurassic rocks of Ler Dome, Kachchh, western India: An attempt to reconstruct the depositional environment. Geologos, 25(1), 3–35. https://doi.org/10.2478/logos-2019-0005

    Article  Google Scholar 

  • Ghosh, S. K., & Chatterjee, B. K. (1994). Depositional mechanisms as revealed from grain-size measures of the palaeoproterozoic Kolhan siliciclastics, Keonjhar District, Orissa, India. Sedimentary Geology., 89(3–4), 181–196. https://doi.org/10.1016/0037-0738(94)90093-0

    Article  Google Scholar 

  • Hanamgond, P. T., & Chavadi, V. C. (1998). Sedimentological study of kwada and belekeri bay beaches, Uttara Kannada, west coast, India. Journal of Geological Society of India, 51(2), 193–200

    Google Scholar 

  • Kanhaiya, S., & Singh, B. P. (2014). Spatial variation of textural parameters in a small river: An example from Khurar River, Khajuraho, Chhaterpur District, Madhya Pradesh, India. Global Journal of Earth Science and Engineering, 1, 34–42. https://doi.org/10.15377/2409-5710.2014.01.01.4

    Article  Google Scholar 

  • Kanhaiya, S., Singh, B. P., & Srivastava, V. K. (2017a). Surface textures of detrital quartz grains derived from Bundelkhand granite in the Khurar River, central India. Publishing House for Science and Technology.

  • Kanhaiya, S., Singh, B. P., Tripathi, M., Sahu, S., & Tiwari, V. (2017b). Lithofacies and particle-size charactristics of late Quaternary floodplain deposits along the middle reaches of the Ganga River, cenral Ganga plain, India. Geomorphology, 284, 220–228.

    Article  Google Scholar 

  • Kaur, P., Chaudhri, N., & Hofmann, A. W. (2015). New evidence for two sharp replacement fronts during albitization of granitoids from northern Aravalli orogen, northwest India. International Geology Review, 57(11–12), 1660–1685. https://doi.org/10.1080/00206814.2014.1000394

    Article  Google Scholar 

  • Kaur, P., Zeh, A., Chaudhri, N., & Tiwana, J. K. (2020). First evidence of late paleoproterozoic/early mesoproterozoic sediment deposition and magmatism in the central Aravalli orogen (NW India). The Journal of Geology, 128(2), 109–129. https://doi.org/10.1086/707235

    Article  Google Scholar 

  • Khanam, S., Quasim, M. A., & Ahmad, A. H. M. (2021). Diagenetic control on the distribution of porosity within the depositional facies of Proterozoic Rajgarh Formation, Alwar sub-basin, Northeastern Rajasthan. Journal of the Geological Society of India, 97(7), 697–710. https://doi.org/10.1007/s12594-021-1752-9

    Article  Google Scholar 

  • Khanam, S., Quasim, M. A., Ahmad, A. H. M., & Ghosh, S. K. (2020). Sedimentation in a rifted basin: Insights from the Proterozoic Rajgarh Siliciclastics, Delhi Supergroup, Northeastern Rajasthan. Journal of Geological Society of India., 95(2), 117–130. https://doi.org/10.1007/s12594-020-1401-8

    Article  Google Scholar 

  • Krinsley, D. H., & Donahue, J. (1968). Environmental interpretation of sand grain surface textures by electron microscopy. Geological Society of America Bulletin, 79(6), 743–748. https://doi.org/10.1130/0016-7606(1968)79[743:EIOSGS]2.0.CO;2

    Article  Google Scholar 

  • Krinsley, D. H., & Doornkamp, J. C. (1973). Atlas of quartz sand surface textures (p. 91). Cambridge University Press.

  • Krinsley, D., & Margolis, S. (1969). Section of geological sciences: A study of quartz sand grain surface textures with the scanning electron microscope. Transactions of the New York Academy of Sciences, 31(5 Series II), 457–477. https://doi.org/10.1111/j.2164-0947.1969.tb02929.x

    Article  Google Scholar 

  • Krumbein, W. C., & Pettijohn, F. J. (1938). Manual of sedimentary petrography (p. 549). Appleton Century Crofts.

  • Madhavaraju, J., Lee, Y. I., Armstrong-Altrin, J. S., & Hussain, S. M. (2006). Microtextures on detrital quartz grains of upper Maastrichtian-Danian rocks of the Cauvery Basin, Southeastern India: Implications for provenance and depositional environments. Geosciences Journal., 10(1), 23–34. https://doi.org/10.1007/BF02910330

    Article  Google Scholar 

  • Mahaney, W. C. (1998). Scanning electron microscopy of Pleistocene sands from Yamal and Taz peninsulas, Ob River estuary, north western Siberia. Quaternary International, 45, 49–58. https://doi.org/10.1016/S1040-6182(97)00006-2

    Article  Google Scholar 

  • Mahaney, W. C., Dirszowsky, R. W., Milner, M. W., Menzies, J., Stewart, A., Kalm, V., & Bezada, M. (2004). Quartz microtextures and microstructures owing to deformation of glaciolacustrine sediments in the northern Venezuelan Andes. Journal of Quaternary Science, 19(1), 23–33. https://doi.org/10.1002/jqs.818

    Article  Google Scholar 

  • Mahaney, W. C., & Kalm, V. (2000). Comparative scanning electron microscopy study of oriented till blocks, glacial grains and Devonian sands in Estonia and Latvia. Boreas, 29(1), 35–51. https://doi.org/10.1111/j.1502-3885.2000.tb01199.x

    Article  Google Scholar 

  • Mahaney, W. C. (2002). Atlas of sand grain surface textures and applications (p. 256). Oxford University Press.

  • Manickam, S., & Barbaroux, L. (1987). Variations in the surface texture of suspended quartz grains in the Loire River: An SEM study. Sedimentology, 34(3), 495–510. https://doi.org/10.1111/j.1365-3091.1987.tb00581.x

    Article  Google Scholar 

  • Moiola, R. J., & Weiser, D. (1968). Textural parameters; an evaluation. Journal of Sedimentary Research, 38(1), 45–53. https://doi.org/10.1306/74D718C5-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Passega, R. (1957). Texture as a characteristic of clastic deposition. American Association of. Petroleum Geology, 41, 1952–1984. https://doi.org/10.1306/0BDA594E-16BD-11D7-8645000102C1865D

    Article  Google Scholar 

  • Passega, R. (1964). Grain Size representation by C–M pattern as a geological tool. Journal of Sedimentary Petrology, 34, 830–847. https://doi.org/10.1306/74D711A4-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Passega, R., & Byramjee, R. (1969). Grain-size image of clastic deposits. Sedimentology, 13(3–4), 233–252. https://doi.org/10.1111/j.1365-3091.1969.tb00171.x

    Article  Google Scholar 

  • Quasim, M. A., Ghosh, S. K., Ahmad, A. H. M., Srivastava, V. K., & Albaroot, M. (2020). Integrated approach oflithofacies and granulometric analysis of the sediments of the Proterozoic Upper Kaimur Group of Vindhyan Supergroup, Son Valley, India: Palaeo-environmental Implications. Geological Journal, 55(9), 5991–6012. https://doi.org/10.1002/gj.3781

    Article  Google Scholar 

  • Ramanathan, A. L., Rajkumar, K., Majumdar, J., Singh, G., Behera, P. N., Santra, S. C., & Chidambaram, S. (2009). Textural characteristics of the surface sediments of a tropical mangrove Sundarban ecosystem India. Indian Journal of Marine Sciences, 38(4), 397–403.

    Google Scholar 

  • Reading, H. G. (1996). Sedimentary environments: Processes, facies and stratigraphy (3rd ed., p. 704). Blackwell.

  • Roy, A. B. (1988). Stratigraphic and tectonic framework of the Aravalli Mountain range. In: Precambrian of the Aravalli Mountain, Rajasthan, India. Memoir Geological Society of India, vol. 7, pp. 3–31.

  • Roy, A. B., & Jakhar, S. R. (2002). Geology of Rajasthan (Northwest India) Precambrian to recent (p. 421). Scientific Publishers.

  • Sahu, B. K. (1964). Significance of size-distribution statistics in the interpretation of depositional environment. Research Bulletin, m. s. Punjab University, 15, 213–219.

    Google Scholar 

  • Sahu, B. K. (1983). Multi-group discrimination of depositional environments using grain size distributions. Indian Journal of Earth Sciences, 10(1), 20–29.

    Google Scholar 

  • Selley, R. C. (1980). Ancient sedimentary environments (p. 287). Cornell University Press.

  • Singh, S. P. (1982). Palaeotectonics and sedimentation trend of the Delhi Supergroup around Rajgarh, northeastern Rajasthan. Journal of Indian Association of Sedimentology, 3, 29–44.

    Google Scholar 

  • Singh, S. P. (1984). Fluvial sedimentation of the Proterozoic Alwar group in the Lalgarh graben, Northwestern India. Sedimentary Geology, 39, 95–119. https://doi.org/10.1016/0037-0738(84)90028-9

    Article  Google Scholar 

  • Singh, S. P. (1988). Sedimentation patterns of the Proterozoic Delhi Supergroup, Northeastern Rajasthan, India, and their tectonic implications. Sedimentary Geology, 58, 79–94. https://doi.org/10.1016/0037-0738(88)90007-3

    Article  Google Scholar 

  • Stewart, H. B., Jr. (1958). Sedimentary reflections of depositional environments in San Miguel Lagoo, Baja California. Maxico1. American Association of Petroleum Geologists Bulletin, 42, 2567–2618. https://doi.org/10.1306/0BDA5BFA-16BD-11D7-8645000102C1865D

    Article  Google Scholar 

  • Udayaganesan, P., Angusamy, N., Gujar, A. R., & Rajamanickam, G. V. (2011). Surface microtextures of quartz grains from the central coast of Tamil Nadu. Journal of the Geological Society of India, 77(1), 26–34. https://doi.org/10.1007/s12594-011-0005-8

    Article  Google Scholar 

  • Udden, J. A. (1914). Mechanical composition of clastic sediments. Geological Society of American Bulletin, 25, 655–744. https://doi.org/10.1130/GSAB-25-655

    Article  Google Scholar 

  • Visher, G. S. (1969). Grain Size distribution and depositional process. Journal of Sedimentary Petrology, 39, 1074–1106. https://doi.org/10.1306/74D71D9D-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Wasel, S. O. (2012). Microtextures of quartz grain surface from recent sedimentary environments along Al-khowkhah-Al-mokha coastal area, southern Red Sea, Yemen. Journal of King Abdulaziz University, Marine Science, 23, 93–107.

    Google Scholar 

  • Weltje, G. J., & Prins, M. A. (2007). Genetically meaningful decomposition of grain-size distributions. Sedimentary Geology, 202(3), 409–424. https://doi.org/10.1016/j.sedgeo.2007.03.007

    Article  Google Scholar 

  • Wentworth, C. K. (1929). Method of computing mechanical composition type in sediments. Bulletin of American Geological Society, 40, 771–790. https://doi.org/10.1130/GSAB-40-771

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Chairperson, Department of Geology, Aligarh Muslim University, Aligarh for providing necessary facilities in the Department. SK is grateful to the University Grants Commission (UGC), New Delhi, for the financial assistance in the form of Non-NET fellowship. We thank the Editor for the editorial support, and the two anonymous reviewers for their constructive suggestions, that significantly improved the manuscript.

Funding

The financial aid for the current work has been provided by the University Grants Commission (UGC), New Delhi, in the form of Non-NET fellowship.

Author information

Authors and Affiliations

Authors

Contributions

SK, MAQ and FA have carried out the fieldwork. SK has processed the data. KFK, MAQ, SK and SK drafted the first outline of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Sadia Khanam.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by S. Bergamaschi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanam, S., Khan, K.F., Quasim, M.A. et al. Proterozoic sandstone of Rajgarh Formation, Alwar sub-basin, Northeastern Rajasthan: sedimentological and paleo-hydrodynamical implications. J. Sediment. Environ. 7, 261–282 (2022). https://doi.org/10.1007/s43217-022-00097-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-022-00097-4

Keywords

Navigation