Skip to main content

Advertisement

Log in

Nearshore suspended sediment concentration and transport pattern along the southern Karnataka coast, India

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The nearshore variation in suspended sediment concentration (SSC) is essential to understand the circulation and sediment transport in and around the coastal area. SSC was derived from shoreline to 20 m bathymetric contour for thirteen transects selected between Malpe and Talapady along the southern Karnataka coast, India. Ocean colour monitor (OCM) and in-situ derived SSC was compared for validation of satellite data. High SSC in the southern side of the study area is due to high wave activity, beach erosion, sediment discharge from the river, dredging activity of New Mangalore Port, and construction of offshore reef at Ullal. In-situ samples show high SSC concentration in the bottom waters in estuaries which signify the dominance of bed load transport over suspended load. In nearshore waters, high concentration in the surface, mid and bottom waters are observed along the stations impacted by anthropogenic activities. The in-situ data is observed to be positively correlating (± 10 mg/l) with OCM data. SSC values deciphered using the modified Tassan algorithm provides accurate estimates in coastal waters off south-west India. The sediment transport pattern derived from statistical parameters of bed sediment samples showed offshore, southward and northward direction. Natural and anthropogenic structures act as a barrier to coastal sediment transport. The direction of sediment transport patterns in the coastal waters is useful for the maintenance of navigational channels and planning the coastal structures in the coastal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aagaard, T., & Jensen, S. G. (2013). Sediment concentration and vertical mixing under breaking waves. Marine Geology, 336, 146–159. https://doi.org/10.1016/j.margeo.2012.11.015

    Article  Google Scholar 

  • Acker, J., Quillon, S., Gould, R., & Arnone, R. (2005). Measuring marine suspended sediment concentration from space: History and potential. International Conference on Remote Sensing for Marine and Coastal Environments, Halifax, Canada. 10p.

  • Amoudry, L. O., & Souza, A. J. (2011). Deterministic coastal morphological and sediment transport modeling: A review and discussion. Rev Geophys, 49. https://doi.org/10.1029/2010RG000341

  • Anilkumar, N., Sarma, Y. V. B., & Babu, K. N. (2006). Post-tsunami oceanographic conditions in southern Arabian Sea and Bay of Bengal. Current Science, 90(3), 10p.

    Google Scholar 

  • Avinash, K., Jayappa, K. S., & Vethamony, P. (2011). Evolution of Swarna estuary and its impact on braided islands and estuarine banks, Southwest coast of India. Environment and Earth Science, 65(3), 835–848.

    Article  Google Scholar 

  • Avinash, K., Jena, B., Vinaya, M., Jayappa, K. S., Narayana, A. C., & Bhat, H. G. (2012). Regionally tuned algorithm to study the seasonal variation of suspended sediment concentration using IRS-P4 Ocean Colour Monitor data. Egypt J Remote Sens Space Sci, 15(1), 67–81. https://doi.org/10.1016/j.ejrs.2012.05.003

    Article  Google Scholar 

  • Bergillos, R. J., López-Ruiz, A., Ortega-Sánchez, M., Masselink, G., & Losada, M. A. (2016). Implications of delta retreat on wave propagation and longshore sediment transport-Guadalfeo case study (southern Spain). Marine Geology, 382, 1–16.

    Article  Google Scholar 

  • Chauhan, O. S., Rajawat, A. S., Pradhan, Y., Suneethi, J., & Nayak, S. R. (2005). Weekly observations on dispersal and sink pathways of the terrigenous flux of the Ganga– Brahmaputra in the Bay of Bengal during NE monsoon. Deep Sea Res, 2(52), 2018–2030.

    Article  Google Scholar 

  • Costa, P. J. M. (2016). Sediment Transport. In: Kennish M.J. (eds) Encyclopedia of Estuaries. Encyclopedia of Earth Sciences Series, Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8801-4.

  • CWC (2017). Integrated Hydrological Data Book. Hydrological Data Directorate, Central Water Commission, Government of India. http://cwc.gov.in/publications?title=integrated+hydr. Accessed 07 October 2019.

  • Deepika, B., & Jayappa, K. S. (2017). Seasonal beach morphological changes along the coast of Udupi district, west coast of India. Journal of Coastal Conservation, 21(4), 545–559. https://doi.org/10.1007/s11852-017-0529-1

    Article  Google Scholar 

  • Doerffer, R. (1992). Imaging spectroscopy for detection of chlorophyll and suspended matter. Toselli F and Bodechtel J (Eds) London: Kluwer Academic Publishers. pp.215–257.

  • Dyer, K. R. (1989). Sediment processes in estuaries: Future research requirements. Journal of Geophysical Research, 94, 14327–14339.

    Article  Google Scholar 

  • Erftemeijer, P. L., Riegl, B., Hoeksema, B. W., & Todd, P. A. (2012). Environmental impacts of dredging and other sediment disturbances on corals: a review. Mar Poll Bul, 64(9), 1737–1765. https://doi.org/10.1016/j.marpolbul.2012.05.008

    Article  Google Scholar 

  • Erico, J. D., Miller, R. L., & Brent, A. M. (2007). Suspended particulate matter in coastal waters from ocean color: application to the northern Gulf of Mexico. Journal of Geophysical Research, 34, 1–6.

    Google Scholar 

  • Fu, W., Ma, J., Chen, P., & Chen, F. (2019). Remote Sensing Satellites for Digital Earth. Manual of Digital Earth, 55–123. https://doi.org/10.1007/978-981-32-9915-3-

  • Gao, S., & Collins, M. (1992). Net sediment transport patterns inferred from grain-size trends based upon definition of “transport vectors.” Sedimentary Geology, 81(1–2), 47–60. https://doi.org/10.1016/0037-0738(92)90055-v

    Article  Google Scholar 

  • Garaba, S., VoB, D., & Zielinski, O. (2014). Physical, bio-optical state and correlations in North-Western European shelf seas. Rem Sens, 6(6), 5042–5066. https://doi.org/10.3390/rs6065042

    Article  Google Scholar 

  • Giardino, A., Schrijvershof, R., Nederhoff, C. M., de Vroeg, H., Brière, C., Tonnon, P.-K., Caires, S., Walstra, D. J., Sosa, J., van Verseveld, W., Schellekens, J., & Sloff, C. J. (2018). A quantitative assessment of human interventions and climate change on the West African sediment budget. Ocean and Coastal Management, 156, 249–265. https://doi.org/10.1016/j.ocecoaman.2017.11.008

    Article  Google Scholar 

  • Gordon, H. R. (1997). Atmospheric correction of ocean color imagery in the earth observing system era. Journal of Geophysical Research, 102, 17081–17106.

    Article  Google Scholar 

  • Holt, J. T., & James, I. D. (1999). A simulation of the southern North Sea in comparison with measurements from the North Sea project part 2 suspended particulate matter. Continental Shelf Research, 19, 1617–1642.

    Article  Google Scholar 

  • Jayappa, K. S., Vijaya Kumar, G. T., & Subrahmanya, K. R. (2003) Influence of coastal structures on the beaches of southern Karnataka, India. J Coast Res, 19(2), 389–408. https://www.jstor.org/stable/4299180.

  • Kairyte, M., & Stevens, R. L. (2015). Composite methodology for interpreting sediment transport pathways from spatial trends in grain size: a case study of the Lithuanian coast. Sedimentology, 62, 681–696. https://doi.org/10.1111/sed.12156

    Article  Google Scholar 

  • Kim, S., Yang, D. S. & Kim, Y. S. (2020). Distribution of metal contamination and grain size in the sediments of Nakdong River, Korea. Environ Monit Assess. https://doi.org/10.1007/s10661-020-08475-z.

  • Kunte, P. D. (2008). Sediment concentration and bed form structures of Gulf of Cambay from remote sensing. International Journal of Remote Sensing, 29(8), 2169–2182.

    Article  Google Scholar 

  • Leys, V., & Mulligan P., R. (2011). Modelling Coastal Sediment Transport for Harbour Planning: Selected Case Studies. Sediment Transport. https://doi.org/10.5772/1500

  • Liu, J. H., Yang, S. L., Zhu, Q., & Zhang, J. (2014). Controls on suspended sediment concentration profiles in the shallow and turbid Yangtze Estuary. Continental Shelf Research, 90, 96–108. https://doi.org/10.1016/j.csr.2014.01.021i

    Article  Google Scholar 

  • Liu, W. C., Hsu, M. H., & Kuo, A. Y. (2002). Modelling of hydrodynamics and cohesive sediment transport in Tanshui river estuarine system, Taiwan. Marine Pollution Bulletin, 44(10), 1076–1088.

    Article  Google Scholar 

  • Lumborg, U. (2004). Modelling the deposition, erosion and flux of cohesive sediment through Øresund. J Marine Syst, 56(1–2), 179–193.

    Google Scholar 

  • Mclaren, P. (1981). An interpretation of trends in grain size measures. Journal of Sedimentary Research, 51(2), 611–624. https://doi.org/10.1306/212f7cf2-2b24-11d7-8648000102c1865d

    Article  Google Scholar 

  • Miller, R. L., & McKee, B. A. (2004). Using MODIS Terra 250m imagery to map concentrations suspended matter in coastal waters. Remote Sensing of Environment, 93(1–2), 259–266.

    Article  Google Scholar 

  • Miranda, L. S., Wijesiri, B., Ayoko, G. A., Egodawatta, P., & Goonetilleke, A. (2021). Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Research, 202. https://doi.org/10.1016/j.watres.2021.117386

  • Moreira, D., & Simionato, C. G. (2019). Modeling the suspended sediment transport in a very wide, shallow, and microtidal estuary, the Río de la Plata. Argentina J Adv Mod Earth Syst, 11(10), 3284–3304.

    Article  Google Scholar 

  • Morris, A. W., & Howarth, M. J. (1998). Bed stress induced sediment resuspension. Continental Shelf Research, 18(11), 1203–1213.

    Article  Google Scholar 

  • Murphy, S., & Voulgaris, G. (2006). Identifying the role of tides, rainfall and seasonality in marsh sedimentation using long-term suspended sediment concentration data. Marine Geology, 227, 31–50.

    Article  Google Scholar 

  • Murthy, M. V., Ravichandran, V., Vendhan, M., Kiran, A. S., Raju, S. K., Avula, A. K, Varthini, S., Abhishek, T. (2020). Shore Protection Measures along Indian Coast – Design to Implementation Based on Two Case Studies. Cur Sci, 118(11). https://doi.org/10.18520/cs/v118/i11/1768-1773.

  • Nayak, S. (2017). Coastal zone management in India—present status and future needs. Coastal zone management in India—present status and future needs. Geo-spatial Info Sci, 20:2, 174–183. https://doi.org/10.1080/10095020.2017.1333715.

  • New Mangalore Port Trust (2018). Administration Report: 2017–2018. Government of India, Ministry of Shipping. http://newmangaloreport.gov.in:8080/#!/adm_report. Accessed 15 December 2019.

  • NHO (2005). Bathymetric chart no. 217 from Kundapura to Kasaragod, India; National Hydrographic Office of India, Superintendence by Rear Admiral B. R. Rao.

  • Nowacki, D., & Ganju, N. (2018). Storm impacts on hydrodynamics and suspended-sediment fluxes in a microtidal back-barrier estuary. Marine Geology, 404, 1–14. https://doi.org/10.1016/j.margeo.2018.06.016

    Article  Google Scholar 

  • Onishi, Y., Serne, J., Arnold, E., Cowan, C., & Thompson, F. (1981). Critical review: radionuclide transport, sediment transport, water quality, mathematical modelling and radionuclide adsorption/desorption mechanism. Pacific Northwest Laboratory, Richland. pp.512.

  • Pradhan, Y., Thomaskutty, A. V., Rajawat, A. S., & Nayak, S. (2005). Improved regional algorithm to retrieve suspended particulate matter using IRS-P4 ocean colour monitor data. Journal of Optics a: Pure and Applied Optics, 7, 343–349.

    Article  Google Scholar 

  • Prasad, J. S., Rajawat, A. S., Pradhan, Y., Chauhan, O. S., & Nayak, S. R. (2002). Retrieval of sea surface velocities using sequential Ocean Colour Monitor (OCM) data. J Earth Sys Sci, 111(3), 189–195. https://doi.org/10.1007/bf02701965

    Article  Google Scholar 

  • Putro, A. H. S., & Lee, J. L. (2020). Analysis of longshore drift patterns on the littoral system of Nusa Dua beach in Bali Indonesia. J Mar Sci Eng, 8, 749. https://doi.org/10.3390/jmse8100749

    Article  Google Scholar 

  • Quantum GIS Development Team (2012) Quantum GIS Geographic Information System. Open Source Geospatial Foundationhttp://qgis.osgeo.org

  • Rajput, P., Ramakrishnan, R., & Rajawat, A. S. (2014). Retrieval of coastal ocean currents using MCC technique on satellite imagery for supplementing altimeter derived currents. The Int Arch Photogrammetry, Remote Sens Spatial Inf Sci, XL-8, 1483–1489. https://doi.org/10.5194/isprsarchives-xl-8-1483-2014.

  • Ramakrishnan, D., Rishikesh, B., & Das, M. (2013). A technique for estimation of suspended sediment concentration in very high turbid coastal waters: an investigation from Gulf of Cambay, India. Marine Geology, 346, 256–261. https://doi.org/10.1016/j.margeo.2013.10.001

    Article  Google Scholar 

  • Rangel-Buitrago N., Neal W. J. (2018) Coastal Erosion Management. In: Finkl C.W., Makowski C. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Sciences Series. Springer. https://doi.org/10.1007/978-3-319-48657-4.

  • Ratheesh, R., & Rajawat, A. S. (2012). Simulation of suspended sediment transport initialized with satellite derived suspended sediment concentrations. Journal of Earth System Science, 121(5), 1201–1213.

    Article  Google Scholar 

  • Rosati, J. D. (2005). Concepts in sediment budgets. Journal of Coastal Research, 21(2), 307–322. https://doi.org/10.2112/02-475A.1

    Article  Google Scholar 

  • Sathasivam, S., Rasheed, K., Kankara, R. S., Muthusamy, M., Samykannu, A., & Boopati, R. (2015). SSC analysis of south maharashtra coast: a case study from vengurla coastal region. Aquatic Procedia, 4, 19–24. https://doi.org/10.1016/j.aqpro.2015.02.004

    Article  Google Scholar 

  • Shen, F., Verhoef, W., Zhou, Y., Salama, M. S., & Liu, X. (2010). Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) Estuary using MERIS data. Estuaries and Coasts, 33(6), 1420–1429.

    Article  Google Scholar 

  • Shetty, A., & Jayappa, K. S. (2020). Seasonal variation in longshore sediment transport rate and its impact on sediment budget along the wave-dominated Karnataka coast, India. Journal of Earth System Science, 129, 1–14. https://doi.org/10.1007/s12040-020-01504-y

    Article  Google Scholar 

  • Shetty, A., Jayappa, K. S., Ramakrishnan, R., & Rajawat, A. S. (2019). Shoreline dynamics and vulnerability assessment along the Karnataka coast, India: a geo-statistical approach. J Indian Soc Remote Sens, 47, 1223–1234. https://doi.org/10.1007/s12524-019-00980-0

    Article  Google Scholar 

  • Shrestha P. L., & Blumberg A. F. (2005). Cohesive Sediment Transport. In: Schwartz M.L. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series, Springer. https://doi.org/10.1007/1-4020-3880-1

  • SoI (2015) Tidal Predication. Survey of India, Dept of Science & Tech. http://www.surveyofindia.gov.in.

  • Soulsby, R. (1997). Dynamics of marine sands. A manual for practical applications. Thomas Telford services limited. pp.249.

  • Sravanthi, N., Ramakrishnan, R., Rajawat, A. S., & Narayana, A. C. (2015). Application of numerical model in suspended sediment transport studies along the Central Kerala, West-coast of India. Aquatic Procedia, 4, 109–116. https://doi.org/10.1016/j.aqpro.2015.02.016

    Article  Google Scholar 

  • Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of sea-water analysis. J Fish Res Bd Canada, 2, 311.

    Google Scholar 

  • Subrahmanya, K. R. (1998). Tectono-magnetic evolution of west coast of India. Gondwana Research, 314, 319–327.

    Article  Google Scholar 

  • Tassan, S. (1994). Local algorithm using SeaWiFS data for retrieval of phytoplankton pigment, suspended sediments and yellow substance in coastal waters. Applied Optics, 33(12), 2369–2378.

    Article  Google Scholar 

  • Walton, T. L., & Dean, R. G. (2010). Longshore sediment transport via littoral drift rose. Ocean Engineering, 37, 228–235.

    Article  Google Scholar 

  • Whitehouse, R., Soulsby, R., William, R., & Mitchener, H. (2000). Dynamics of estuarine muds: a manual for practical applications. Thomas Telford.

    Book  Google Scholar 

  • Zheng, G., & Tang, D. L. (2007). Offshore and nearshore chlorophyll increases induced by typhoon and typhoon rain. Marine Ecology Progress Series, 333, 61–74.

    Article  Google Scholar 

  • Zonta, R., Collavini, F., Zaggia, L., & Zuliani, A. (2005). The effect of floods on the transport of suspended sediments and contaminants: a case study from the estuary of the Dese River (Venice Lagoon, Italy). Environment International, 31(7), 948–958.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Space Applications Centre, ISRO, Ahmedabad for the award of Research Project under the Meteorology and Oceanography Programme—III (SAC/EPSA/MPSG/GSD/MOP3/CST/WP/01/2013, dated 16.08.2013). The authors thank the Department of Marine Geology, Mangalore University for extending facilities and the College of Fisheries, Mangaluru is acknowledged for providing the research vessel for the collection of water and sediment samples. The authors thank the anonymous reviewers and the editor for their constructive comments and scientific suggestions to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Jayappa.

Ethics declarations

Conflict of interest

No conflicts of interest to disclose.

Additional information

Communicated by M. V. Alves Martins

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, A., Jayappa, K.S., Deepak, P.R. et al. Nearshore suspended sediment concentration and transport pattern along the southern Karnataka coast, India. J. Sediment. Environ. 7, 95–110 (2022). https://doi.org/10.1007/s43217-021-00086-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-021-00086-z

Keywords

Navigation