Skip to main content

Advertisement

Log in

Calcrete profiles in Puthukulam quarry section, Sathankulam region, Southern Tamilnadu, India: implications on palaeoclimate significance

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

Calcrete is an impure limestone which is used as a substitute raw material resources for high-grade primary limestones like shell limestone, meta-sedimentary crystalline limestone in cement industries. They occur as a boundless deposit within the regolith profile sections rest over the basement rocks of granite quarry at Puthukulam Village, near Sathankulam region, Tuticorin District of Tamil Nadu, India. Geology of the area and schematic calcrete profiles stratigraphy are given. Field observation reveals that calcrete occurs as massive, laminated, oolitic, hardpan and lumpy forms in the study area. Micromorphological characters of calcrete of the area are revealing the displacive and replacive texture. And also the micritic and microsparitic calcite deposition is associated with regolith material. X-ray diffraction analysis reveals the general mineralogy and clay mineralogy of the calcrete. The major element geochemistry of calcrete through X-ray fluorescence spectrometry analysis (XRF) indicates that CaO, MgO, SiO2, Al2O3 and Fe2O3 are in a higher elevated concentration above 1% than other oxides, such as MnO, MgO, Na2O, K2O, TiO2 and P2O5. To evaluate the palaeoclimate significance, results of the proxies of mineralogy, clay mineralogy and major element geochemistry of calcrete are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Armstrong-Altrin, J. S., Lee, Y. I., Kasper-Zubillaga, J. J., & Trejo-Ramírez, E. (2016). Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: Implications for palaeo weathering, provenance, and tectonic setting. Geological Journal., 52(4), 559–582. https://doi.org/10.1002/gj.2792.

    Article  Google Scholar 

  • Armstrong-Altrin, J. S., Verma, S. P., Madhavaraju, J., Lee, Y. I., & Ramasamy, S. (2003). Geochemistry of Upper Miocene Kudankulam Limestones, Southern India. International Geology Review, 45(1), 16–26. https://doi.org/10.2747/0020-6814.45.1.16.

    Article  Google Scholar 

  • Bedelean, H. (2004). Study on the diagenetic calcareous accumulations in a soil profile from Floresti (Cluj County, Romania). Studia UBB Geologia, 49(1), 75–85. https://doi.org/10.5038/1937-8602.49.1.7.

    Article  Google Scholar 

  • Deepthy, R., & Balakrishnan, S. (2005). Climatic control on clay mineral formation: Evidence from weathering profiles developed on either side of the Western Ghats. Journal of Earth System Science, 114(5), 545–556. https://doi.org/10.1007/BF02702030.

    Article  Google Scholar 

  • Geibler V, Freiberg B (1998) Classification and geochemistry of arid semi-arid Paleosols. https://www.geo.Freiberg.De/oberseminar/05-06-07/geissler:1-12

  • Grevenitz, P. (2006). The character and genesis of pedogenic calcrete in Southern Australia. Ph.D. thesis, School of Earth and Environment Sciences, University of Wollongong. https://ro.uow.edu.au/theses/559/.

  • Harris, W., Norman White, G., Ulery, A. L., & Richard Drees, L. (2008). X-ray diffraction techniques for soil mineral identification. Methods of soil analysis part-5-mineralogical methods (pp. 81–115). Madison: American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2136/sssabookser5.5.c4.

    Chapter  Google Scholar 

  • Hema, A., Flora, O., Braida, M., Navin, S., & Stenni, B. (2010). Radiocarbon ages of pedogenic carbonate nodules from Coimbatore region, Tamil Nadu. Journal Geological Society of India, 75, 791–798. https://doi.org/10.1007/s12594-010-0072-2.

    Article  Google Scholar 

  • Hema, A., & Navin, S. (2004). Pedogenic calcretes from Coimbatore area, Tamil Nadu: Micromorphology, geochemistry and palaeoclimate significance (IC-2004/35). International Atomic Energy Agency (IAEA). https://inis.iaea.org/search/search.aspx?orig_q=RN:36080692.

  • Hill, S.M., McQueen, K.G., & Foster, K.A. (1999). Regolith carbonates accumulations in Western and Central NSW: Characteristics and potential use as an exploration sampling medium. In: Taylor G.M., Pain C.F. (Eds) State of the Regolith, Proceedings of Regolith 98 (pp. 191–208). Perth: CRC LEME. https://crcleme.org.au/Pubs/Monographs/regolith98/17-hill_et_al.pdf.

  • Hong, H., Li, Z., Xue, H., Zhu, Y., Zhang, K., & Xiang, S. (2007). Oligocene clay mineralogy of the Linxia Basin: Evidence of Paleoclimatic evolution subsequent to the initial-stage uplift of the Tibetan Plateau. Clays and Clay Minerals, 55(5), 491–503. https://doi.org/10.1346/CCMN.2007.0550504.

    Article  Google Scholar 

  • Jain, M., & Tandon, S.K. (2003) Quaternary alluvial stratigraphy and palaeoclimatic reconstruction at the Thar Margin. Current Science, 84(8), 1048–1055. JSTOR, www.jstor.org/stable/24107667. Accessed 12 Sept 2020. DOI: https://doi.org/10.2307/24107667

  • Jimenez-Espinosa, R., & Jimenez-Millan, J. (2003). Calcrete development in Mediterranean colluvial carbonates systems SE Spain. Journal of Arid Environments, 53, 479–489. https://doi.org/10.1006/jare.2002.1061.

    Article  Google Scholar 

  • Jiménez-Espinosa, R., & Jiménez-Millán, J. (2003). Calcrete development in Mediterranean colluvial carbonate systems from SE Spain. Journal of Arid Environments, 53(4), 479–489. https://doi.org/10.1006/jare.2002.1061.

    Article  Google Scholar 

  • Kile, D. E., & Eberl, D. D. (2000). Quantitative mineralogy and particle-size distribution of bed sediments in the Boulder Creek watershed. In Murphy, S. F., Verplanck, P. L., Barber, L. B. (Eds) Comprehensive water quality of the Boulder Creek Watershed, Colorado, during high-flow and low-flow conditions, 2003, Water Resources Investigation Report 03–4045; U.S. Geological Survey: Washington, DC. https://www.researchgate.net/publication/265447398.

  • Küçükuysal, C., & Kapur, S. (2014). Mineralogical, geochemical and micro-morphological evaluation of the Plio-Quaternary paleosols and calcretes from Karahamzall, Ankara (Central Turkey). Geologica Carpathica, 65(3), 241–253. https://doi.org/10.2478/geoca-2014-0014.

    Article  Google Scholar 

  • McCahon, T. J., & Miller, K. B. (1997). Climatic significance of natric horizons in Permian (Asselian) palaeosols of north-central Kansas, USA. Sedimentology, 44(1), 113–125. https://doi.org/10.1111/j.1365-3091.1997.tb00427.x.

    Article  Google Scholar 

  • McQueen, K.G., (2006). Calcrete geochemistry in the Cobar-Girilambone region, New South Wales. CRC LEME Open File Report 200, (pp. 1–27). https://www.researchgate.net/publication/254403032

  • Michael, E. F., & Meentemeyer, V. (1987). Climatic control of the geography of clay minerals genesis. Annals of the Association of American Geographers, 77(4), 635–650. https://doi.org/10.1111/j.1467-8306.1987.tb00185.x.

    Article  Google Scholar 

  • Minyuk, P. S., Brigham-Grette, J., & Melles, M. (2007). Inorganic geochemistry of El’gygytgyn Lake sediments (northeastern Russia) as an indicator of paleoclimatic change for the last 250 kyr. Journal of Paleolimnology, 37, 123–133. https://doi.org/10.1007/s10933-006-9027-4.

    Article  Google Scholar 

  • Mitra, M. (1989). Fundamental of optical spectroscopic and X-ray. Mineralogy Wiley. https://www.worldcat.org/oclc/17300449.

  • Moazallahi, M., & Farpoor, M. H. (2012). Soil genesis and clay mineralogy along the Xeric-Aridic Climotoposequence in South Central Iran. Journal of Agricultural Science and Technology., 14(3), 683–696.

    Google Scholar 

  • Nagarajan, R., Madhavaraju, J., Nagendra, R., Selvamony, J., Armstrong-Altrin, & Moutte, J., (2007). Geochemistry of Neo-Proterozoicshale’s of the Rabanapalli Formation, Bhima Basin, Northern Karnataka, Southern India: Implications for provenance and palaeo-redox conditions. Revista Mexicana De Ciencias Geologicas,24, 150–160. https://www.scielo.org.mx/pdf/rmcg/v24n2/v24n2a3.pdf.

  • Pal, D. K., Bhattacharya, T., Sinha, R., Srivastava, P., Dasgupta, A. S., Chandran, P., et al. (2012). Clay minerals record from Late Quaternary drill ores of the Ganga Plains and their implications for provenance and climate change in the Himalayan foreland. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 27–37. https://doi.org/10.1016/j.palaeo.2011.05.009.

    Article  Google Scholar 

  • Perumal, V. (2017). Petrography and Geochemistry of Calcrete Deposit in and around Sathankulam Region, Southern Tamilnadu, India. Ph.D. Thesis published at Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu. https://shodhganga.inflibnet.ac.in/handle/10603/207324.

  • Perumal, V., & Udayanapillai, A.V. (2015). Petro-mineralogy and major elements geochemistry of Regolith profile of calcrete deposits at Pandalgudi, Viruthunagar District, Tamilnadu, India. International Research Journal of Earth Sciences, 3(9), 1–7. https://www.researchgate.net/publication/318440925.

  • Perumal, V., & Udayanapillai, A. V. (2019). Micromorphology and major element geochemistry of calcretes in the Thoppukulam mine section, Sathankulam region, Southern Tamil Nadu, India: Implications on depositional environment. Arabian Journal of Geosciences., 12(385), 1–12. https://doi.org/10.1007/s12517-019-4544-4.

    Article  Google Scholar 

  • Perumal, V., Udayanapillai, A.V., John S. Armstrong-Altrin, & Satyanarayanan, M.,(2016) Major element geochemistry and depositional environment of Regolith calcrete deposit of Nedungkulam village, near Sathankulam area Tuticorin district, Tamilnadu, India. Journal of Outreach, 9, 307–313. https://www.researchgate.net/publication/318440782.

  • Piper, C. S. (1947). Soil and plant analysis. New York: Interscience Publishers Inc. https://doi.org/10.1002/jps.3030350611.

    Book  Google Scholar 

  • Prudêncio, M. I., Dias, M. I., Waerenborgh, J. C., Ruiz, F., Trindade, M. J., Abad, M., et al. (2011). Rare earth and other trace and major elemental distribution in a pedogenic calcrete profile (Slimene, NE Tunisia). CATENA, 87(1), 147–156. https://doi.org/10.1016/j.catena.2011.05.018.

    Article  Google Scholar 

  • Rodas, M., Luque, F. J., Mas, R., & Garzon, M. G. (1994). Calcretes, palycretes and silcrete in the paleocene detrital sediments of the Duero and Tajo Basin, Central Spain. Clay Minerals, 29(2), 273–285. https://doi.org/10.1180/claymin.1994.029.2.13.

    Article  Google Scholar 

  • Sinha, R., Smykatz-Kloss, W., Stiiben, D., Harrison, S. P., Berner, Z., & Kramar, U. (2006). Late Quaternary palaeoclimatic reconstruction from the lacustrine sediments of the Sāmbhar playa cone, Thar Desert Margin, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 233(3–4), 252–270. https://doi.org/10.1016/j.palaeo.2005.09.012.

    Article  Google Scholar 

  • Smykatz-Kloss, W., & Roy, P. D. (2010). Evaporite mineralogy and major element geochemistry as tools for palaeoclimatic investigations in arid regions: a synthesis. Boletín de la Sociedad Geológica Mexicana, 62(3), 379–390. https://doi.org/10.18268/BSGM2010v62n3a5.

    Article  Google Scholar 

  • Solomons, W., Goudie, A., & Mook, W. G. (1978). Isotope composition of calcrete deposits from Europe, Africa and India. Earth Surface Processes, 3, 43–57. https://doi.org/10.1002/esp.3290030105.

    Article  Google Scholar 

  • Srivastava, P. (2001). Palaeoclimatic implications of pedogenic carbonate in Holocene soils of the Gangetic Plains, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 172, 207–222. https://doi.org/10.1016/S0031-0182(01)00276-0.

    Article  Google Scholar 

  • Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstones composition and paleoclimate, I, framework mineralogy. Journal of Sedimentary Petrology, 56, 329–345. https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  • Tanton, S. K., & Andrews, J. E. (2001). Lithofacies associations and stable isotopes of palustrine and calcrete carbonates: examples from and Indian. Maastrichtian regolith. Sedimentology, 48, 339–335. https://doi.org/10.1046/j.1365-3091.2001.00367.x.

    Article  Google Scholar 

  • Tukur, A., Dike, E. F. C., & Abubakar, U. (2012). Calcrete and Ferruginous Paleosols in The Early Cretaceous Bima Sand stone, Upper Benue Through, Northeastern Nigeria. Journal of Mining and Geology, 48(1), 57–68.

    Google Scholar 

  • Udayanapillai, A. V., & Ganesamoorthy, P. (2013). Mineralogy and geochemistry of red and black sediments of Thoothukudi District, Tamilnadu, India. Journal of Geology Society of Sri Lanka., 15, 47–56.

    Google Scholar 

  • Udayanapillai, A. V., Perumal, V., & Armstrong-Altrin, J. S. (2020). Provenance, Weathering, Tectonic setting and Palaeo-oxygenation condition of the Cretaceous Calcareous Grey Shale (CGS) from the Kallakudi Dalmia Limestone Quarry No:II, Uttatur group, Trichinopoly, Tamilnadu, India. Himalayan Geology, 41(1), 11–20.

    Google Scholar 

  • Udayanapillai, A. V., Perumal, V., John, S.-A., & Satyanarayanan, M. (2016). Micromorphology, Geochemistry and Spatial evaluation of Calcrete deposits in and around Sathankulam, Tuticorin District, Tamilnadu, India. Journal of Geoscience Research, 1(2), 111–118.

    Google Scholar 

  • Udayanapillai, A. V., Perumal, V., Thirugnasambandam, R., Venkataraman, P., & Thangavel, M. (2015). Study Of Micro-Morphology, Major Element Geochemistry and Palaeoclimatic Implications Of Calcrete Deposits At Salukkuvarpatti Village, Near Pandalgudi, Viruthunagar District, Tamilnadu, India. Journal of Applied Geochemistry, 17(4), 421–431.

    Google Scholar 

  • Udayanapillai, A. V., Thirugnanasambandam, R., Venkataraman, P., Thangavel, M., Kaliammal, M., Perumal, V., et al. (2014). GIS based evaluation of major element geochemistry of calcrete deposit in and around Sivalarpatti village, near Pandalgudi, Virudhunagar District, Tamilnadu, India. Journal of Outreach, 7, 136–141.

    Google Scholar 

  • Udayanapillai, A. V., & Udayanapillai, R. (2012). Petro-mineralogy and major element geochemistry of calcrete deposits at Maravarperungudi Village, near Pandalgudi area, Virudhunagar District, Tamilnadu, India. Journal of Outreach, 5, 123–128.

    Article  Google Scholar 

  • Udayanapillai, A. V., Venkataraman, P., Jayaranjeetham, J., & Perumal, V. (2012). Geochemistry of Groundwater in and around Vilathikulam and Ottapidaram Taluks, Thoothukudi District, Tamilnadu, India. Journal of Outreach., 5, 113–116.

    Google Scholar 

  • Wang, Y., Nehon, D., & Merino, E. (1994). Dynamic model of the genesis of calcrete replacing silicate rocks in semi-arid regions. Geochimica et Cosmochimica Acta, 58(23), 5131–5145. https://doi.org/10.1016/0016-7037(94)90299-2.

    Article  Google Scholar 

  • Waragai, T. (2005). Holocene calcrete crust deposits on the moraine of Batura Glacier, northern Pakistan. The Island Arc, 14(4), 368–377. https://doi.org/10.1111/j.1440-1738.2005.00492.x.

    Article  Google Scholar 

  • Wright, V. P., & Tucker, M. E. (1991). Calcretes: an introduction. In V. P. Wright & M. E. Tucker (Eds.), Calcretes. IAS reprint series-2 (pp. 1–22). Oxford: Blackwell Scientific Publications. https://doi.org/10.1002/9781444304497.ch.

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors express their acknowledgment with thanks for granting permission for the authorities of V.O. Chidambaram College, Tuticorin, to publish this research paper from the part of the Ph.D. thesis work of the author Dr. V. Perumal. They further express their thanks to the government of Tamil Nadu for sanctioning fellowship amount through the above college to publish this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perumal Velmayil.

Additional information

Communicated by M. V. Alves Martins

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velmayil, P., Alagaiah Venu, U. Calcrete profiles in Puthukulam quarry section, Sathankulam region, Southern Tamilnadu, India: implications on palaeoclimate significance. J. Sediment. Environ. 5, 493–503 (2020). https://doi.org/10.1007/s43217-020-00029-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-020-00029-0

Keywords

Navigation