Skip to main content
Log in

Exploring the role of TiN electrodes in the formation of ferroelectric HfxZr1-xO2 thin films through transmission electron microscopy

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The development of ferroelectric HfO2-based thin films, with their potential to revolutionize semiconductor technology, relies on comprehending the factors that drive the formation of the polar orthorhombic phase. Although TiN electrodes are known to facilitate orthorhombic phase formation, a comprehensive understanding is still lacking. Our study offers an in-depth exploration of the pivotal role played by TiN electrodes in shaping ferroelectric (Hf,Zr)O2-based thin films using transmission electron microscopy (TEM). Through direct depositions of Hf0.65Zr0.35O2 (HZO) thin films and TiN masks onto a silicon membrane TEM grid, we enable a straightforward structural comparison between HZO thin films annealed with and without a TiN capping layer. This approach ensures uniform conditions across all parameters, except the presence of the TiN capping layer, while eliminating potential artifacts introduced during the TEM sampling. Our comprehensive analysis, incorporating electron diffraction, high-resolution TEM (HR-TEM), and electron energy loss spectroscopy (EELS), delves into the possible influences of factors such as tensile strain, oxygen vacancies, and the surface atomic mobility constraint effect induced by the TiN capping layer. The results underscore the dominant role of TiN in surface atomic mobility constraint, thereby significantly contributing to the formation of ferroelectric HZO. This research promises to advance our understanding of ferroelectric materials, thus expediting the progress of ferroelectric and semiconductor technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets from this study are available from the corresponding author upon reasonable request.

References

  1. T.S. Boescke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Appl. Phys. Lett. 99(10), 102903 (2011). https://doi.org/10.1063/1.3634052

    Article  ADS  CAS  Google Scholar 

  2. U. Schroeder, M.H. Park, T. Mikolajick, C.S. Hwang, Nat. Rev. Mater. 7(8), 653–669 (2022). https://doi.org/10.1038/s41578-022-00431-2

    Article  ADS  Google Scholar 

  3. M.H. Park, Y.H. Lee, T. Mikolajick, U. Schroeder, C.S. Hwang, Mrs Commun 8(3), 795–808 (2018). https://doi.org/10.1557/mrc.2018.175

    Article  CAS  Google Scholar 

  4. T.D. Huan, V. Sharma, G.A. Rossetti, R. Ramprasad, Phys. Rev. B 90(6), 064111 (2014). https://doi.org/10.1103/PhysRevB.90.064111

    Article  ADS  CAS  Google Scholar 

  5. S.K. Lee, C.W. Bark, J. Korean Ceram. Soc. 59(1), 25–43 (2022). https://doi.org/10.1007/s43207-021-00171-z

    Article  CAS  Google Scholar 

  6. A. Kumar, P. Kumar, A. Dhaliwal, J. Korean Ceram. Soc. 59(3), 370–382 (2022). https://doi.org/10.1007/s43207-021-00183-9

    Article  CAS  Google Scholar 

  7. R. Materlik, C. Künneth, M. Falkowski, T. Mikolajick, A. Kersch, J. Appl. Phys. 123(16), 164101 (2018). https://doi.org/10.1063/1.5021746

    Article  ADS  CAS  Google Scholar 

  8. Z.H. Li, J.C. Wei, J.L. Meng, Y.K. Liu, J.J. Yu, T.Y. Wang, K.L. Xu, P. Liu, H. Zhu, S.Y. Chen, Q.Q. Sun, D.W. Zhang, L. Chen, Nano Lett. 23(10), 4675–4682 (2023). https://doi.org/10.1021/acs.nanolett.3c00085

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Y. Ahn, J.Y. Son, J. Korean Ceram. Soc. 60(2), 301–309 (2023). https://doi.org/10.1007/s43207-022-00265-2

    Article  CAS  Google Scholar 

  10. Y. H. Lee, H. J. Kim, T. Moon, K. Do Kim, S. D. Hyun, H. W. Park, Y. B. Lee, M. H. Park, C. S. Hwang, Nanotechnology, 28, 30, 305703 (2017). Doi: https://doi.org/10.1088/1361-6528/aa7624

  11. M. Materano, P.D. Lomenzo, A. Kersch, M.H. Park, T. Mikolajick, U. Schroeder, Inorg Chem Front 8(10), 2650–2672 (2021). https://doi.org/10.1039/d1qi00167a

    Article  CAS  Google Scholar 

  12. T. Mittmann, T. Szyjka, H. Alex, M.C. Istrate, P.D. Lomenzo, L. Baumgarten, M. Müller, J.L. Jones, L. Pintilie, T. Mikolajick, U. Schroeder, Phys. Status Solidi-R 15(5), 2100012 (2021). https://doi.org/10.1002/pssr.202100012

    Article  CAS  Google Scholar 

  13. W. Hamouda, A. Pancotti, C. Lubin, L. Tortech, C. Richter, T. Mikolajick, U. Schroeder, N. Barrett, J. Appl. Phys. 127(6), 064105 (2020). https://doi.org/10.1063/1.5128502

    Article  ADS  CAS  Google Scholar 

  14. R. Materlik, C. Künneth, A. Kersch, J. Appl. Phys. 117(13), 134109 (2015). https://doi.org/10.1063/1.4916707

    Article  ADS  CAS  Google Scholar 

  15. P. Polakowski, J. Müller, Appl. Phys. Lett. 106(23), 232905 (2015). https://doi.org/10.1063/1.4922272

    Article  ADS  CAS  Google Scholar 

  16. M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, S. D. Hyun, T. Mikolajick, U. Schroeder, C. S. Hwang, Nanoscale, 10, 2, 716–725 (2018). Doi: https://doi.org/10.1039/c7nr06342c

  17. S.S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S.-L. Hsu, J. Xiao, H. Zhang, R. Wagner, A. Datar, M.R. McCarter, C.R. Serrao, A.K. Yadav, G. Karbasian, C.-H. Hsu, A.J. Tan, L.-C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R.V. Chopdekar, P. Shafer, E. Arenholz, C. Hu, R. Proksch, R. Ramesh, J. Ciston, S. Salahuddin, Nature 580(7804), 478–482 (2020). https://doi.org/10.1038/s41586-020-2208-x

    Article  ADS  CAS  PubMed  Google Scholar 

  18. B. Ku, S. Choi, Y. Song, C. Choi, S. Vlsi Tech. (2020). https://doi.org/10.1109/vlsitechnology18217.2020.9265024

    Article  Google Scholar 

  19. E.H. Kisi, C.J. Howard, R.J. Hill, J. Am. Ceram. Soc. 72(9), 1757–1760 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb06322.x

    Article  CAS  Google Scholar 

  20. S.J. Kim, D. Narayan, J.G. Lee, J. Mohan, J.S. Lee, J. Lee, H.S. Kim, Y.C. Byun, A.T. Lucero, C.D. Young, S.R. Summerfelt, T. San, L. Colombo, J. Kim, Appl. Phys. Lett. 111(24), 242901 (2017). https://doi.org/10.1063/1.4995619

    Article  ADS  CAS  Google Scholar 

  21. T. Shiraishi, K. Katayama, T. Yokouchi, T. Shimizu, T. Oikawa, O. Sakata, H. Uchida, Y. Imai, T. Kiguchi, T.J. Konno, H. Funakubo, Appl. Phys. Lett. 108(26), 262904 (2016). https://doi.org/10.1063/1.4954942

    Article  ADS  CAS  Google Scholar 

  22. Y. M. Kim, J. H. Mun, S.-J. Kim, J. Korean Ceram. Soc., 1–13 (2022). Doi: https://doi.org/10.1007/s43207-021-00150-4

  23. S. Liu, B.M. Hanrahan, Phys. Rev. Mater. 3(5), 054404 (2019). https://doi.org/10.1103/PhysRevMaterials.3.054404

    Article  CAS  Google Scholar 

  24. P. Nukala, M. Ahmadi, Y.F. Wei, S. de Graaf, E. Stylianidis, T. Chakrabortty, S. Matzen, H.W. Zandbergen, A. Björling, D. Mannix, D. Carbone, B. Kooi, B. Noheda, Science 372(6542), 630–635 (2021). https://doi.org/10.1126/science.abf3789

    Article  ADS  CAS  PubMed  Google Scholar 

  25. J.H. Jang, H.S. Jung, J.H. Kim, S.Y. Lee, C.S. Hwang, M. Kim, J. Appl. Phys. 109(2), 023718 (2011). https://doi.org/10.1063/1.3544039

    Article  ADS  CAS  Google Scholar 

  26. G.D. Wilk, D.A. Muller, Appl. Phys. Lett. 83(19), 3984–3986 (2003). https://doi.org/10.1063/1.1626019

    Article  ADS  CAS  Google Scholar 

  27. S. Kang, W.-S. Jang, A.N. Morozovska, O. Kwon, Y. Jin, Y.-H. Kim, H. Bae, C. Wang, S.-H. Yang, A. Belianinov, Science 376(6594), 731–738 (2022). https://doi.org/10.1126/science.abk3195

    Article  ADS  CAS  PubMed  Google Scholar 

  28. M.S. Moreno, K. Jorissen, J.J. Rehr, Micron 38(1), 1–11 (2007). https://doi.org/10.1016/j.micron.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  29. J. Rehr, J. Kas, K. Jorissen, Microsc. Microanal. 22(S3), 1408–1409 (2016). https://doi.org/10.1017/S1431927616007881

    Article  ADS  Google Scholar 

  30. X.H. Xu, F.T. Huang, Y.B. Qi, S. Singh, K.M. Rabe, D. Obeysekera, J.J. Yang, M.W. Chu, S.W. Cheong, Nat. Mater. 20(6), 826 (2021). https://doi.org/10.1038/s41563-020-00897-x

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. RS-2023-00222411 and NRF-2022R1C1C1010157). STEM-EELS experiments were conducted using the Spectra 300 TEM instrument at the Korea Research Institute of Standards and Science (KRISS).

Funding

This study was funded by Ministry of Science and ICT, South Korea, RS-2023-00222411, Seung-Yong Lee, NRF-2022R1C1C1010157, Seung-Yong Lee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Hyuk Park or Seung-Yong Lee.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Lee, J., Seo, J.H. et al. Exploring the role of TiN electrodes in the formation of ferroelectric HfxZr1-xO2 thin films through transmission electron microscopy. J. Korean Ceram. Soc. 61, 327–334 (2024). https://doi.org/10.1007/s43207-023-00361-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00361-x

Keywords

Navigation