Skip to main content

Advertisement

Log in

Scalable synthesis of MOFs-derived ZnO/C nanohybrid: efficient electrocatalyst for oxygen evolution reaction in alkaline medium

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

One of the main goals of energy conversion research is to develop efficient, nonprecious, and stable electrocatalysts to replace deficient and unstable noble metal catalysts. Hence, this work described metal–organic frameworks (MOFs) derived ZnO/C hybrid via a hydrothermal route grown on the surface of conducting stainless steel substrate (SS). By using multiple physical techniques (XRD, FTIR, TEM, XPS, and EDX), we compared structural and morphological properties of ZnO/C hybrid and MOF-5 electrodes. The electrocatalytic behaviour of amiable and economical ZnO/C/SS catalyst was noticed in catalyzing oxygen evolution reaction (OER) in one mole KOH electrolyzer with low overpotential and excellent stability. Cyclic sweep voltammetry indicated that the ZnO/C/SS hybrid only needs an ultralow overpotential of 282 mV to achieve a current density of 10 mA cm−1 for OER. In addition, ZnO/C/SS with a low Tafel slope of 39.3 mV/dec and higher 0.29 s−1 turnover frequency can serve as a proficient electrocatalyst compared to commercial ZnO and MOF-5 electrodes. The stability of ZnO/C/SS hybrid electrocatalyst approaching minor chronoamperometric degradation after 55 h. The electrochemical response depicts that the successful synthesis of MOF-derived ZnO/C/SS catalyst provided abundant active centers and boosted an electron-rich environment to promote its future prosperity and facilitate practical applications for electrochemical water-splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be available from the authors upon reasonable request.

References

  1. J. Wang, X. Yue, Y. Yang, S. Sirisomboonchai, P. Wang, X. Ma, A. Abudula, G. Guan, Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. J. Alloys Compd. 819, 153346 (2020). https://doi.org/10.1016/j.jallcom.2019.153346

    Article  CAS  Google Scholar 

  2. P.J. McHugh, A.D. Stergiou, M.D. Symes, Decoupled electrochemical water splitting: from fundamentals to applications. Adv. Energy Mater. 10, 1–21 (2020). https://doi.org/10.1002/aenm.202002453

    Article  CAS  Google Scholar 

  3. G.B. Darband, M. Aliofkhazraei, S. Shanmugam, Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting. Renew. Sustain. Energy Rev. 114, 109300 (2019). https://doi.org/10.1016/j.rser.2019.109300

    Article  CAS  Google Scholar 

  4. S. Anantharaj, S.R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P.E. Karthik, S. Kundu, Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ. Sci. 11, 744–771 (2018). https://doi.org/10.1039/c7ee03457a

    Article  CAS  Google Scholar 

  5. M.K. Kundu, T. Bhowmik, R. Mishra, S. Barman, Platinum nanostructure/nitrogen-doped carbon hybrid: enhancing its base media HER/HOR activity through Bi-functionality of the catalyst. Chemsuschem 11, 2388–2401 (2018). https://doi.org/10.1002/cssc.201800856

    Article  CAS  Google Scholar 

  6. Y. Zhou, Y. Zhang, Z. Li, C. Hao, Y. Wang, Y. Li, Y. Dang, X. Sun, G. Han, Y. Fu, Oxygen reduction reaction electrocatalysis inducing Fenton-like processes with enhanced electrocatalytic performance based on mesoporous ZnO/CuO cathodes: treatment of organic wastewater and catalytic principle. Chemosphere 259, 127463 (2020). https://doi.org/10.1016/j.chemosphere.2020.127463

    Article  CAS  Google Scholar 

  7. J. Yu, Q. Cao, B. Feng, C. Li, J. Liu, J.K. Clark, J.J. Delaunay, Insights into the efficiency and stability of Cu-based nanowires for electrocatalytic oxygen evolution. Nano Res. 11, 4323–4332 (2018). https://doi.org/10.1007/s12274-018-2020-1

    Article  CAS  Google Scholar 

  8. C. Lu, J. Wang, S. Czioska, H. Dong, Z. Chen, Hierarchically structured Cu-based electrocatalysts with nanowires array for water splitting. J. Phys. Chem. C. 121, 25875–25881 (2017). https://doi.org/10.1021/acs.jpcc.7b08365

    Article  CAS  Google Scholar 

  9. B.J. Rani, G. Ravi, R. Yuvakkumar, Z.M. Hasan, S. Ravichandran, S.I. Hong, Binder free, robust and scalable CuO@GCE modified electrodes for efficient electrochemical water oxidation. Mater. Chem. Phys. 239, 122321 (2020). https://doi.org/10.1016/j.matchemphys.2019.122321

    Article  CAS  Google Scholar 

  10. L. Yaqoob, T. Noor, N. Iqbal, H. Nasir, N. Zaman, K. Talha, Electrochemical synergies of Fe–Ni bimetallic MOF CNTs catalyst for OER in water splitting. J. Alloys Compd. 850, 156583 (2021). https://doi.org/10.1016/j.jallcom.2020.156583

    Article  CAS  Google Scholar 

  11. E. Umeshbabu, G. Rajeshkhanna, P. Justin, G.R. Rao, NiCo2O4/rGO hybrid nanostructures for efficient electrocatalytic oxygen evolution. J. Solid State Electrochem. 20, 2725–2736 (2016). https://doi.org/10.1007/s10008-016-3278-4

    Article  CAS  Google Scholar 

  12. N. Zaman, T. Noor, N. Iqbal, Recent advances in the metal–organic framework-based electrocatalysts for the hydrogen evolution reaction in water splitting: a review. RSC Adv. 11, 21904–21925 (2021). https://doi.org/10.1039/D1RA02240G

    Article  CAS  Google Scholar 

  13. W. Zheng, L.Y.S. Lee, Metal-organic frameworks for electrocatalysis: catalyst or precatalyst? ACS Energy Lett. 6, 2838–2843 (2021). https://doi.org/10.1021/acsenergylett.1c01350

    Article  CAS  Google Scholar 

  14. V.M. Varsha, G. Nageswaran, L. Jothi, S.A. Ravi, Review—recent advances in metal organic framework derived carbon materials for electrocatalytic applications. J. Electrochem. Soc. 169, 36503 (2022). https://doi.org/10.1149/1945-7111/ac5547

    Article  CAS  Google Scholar 

  15. F. Mo, Q. Zhou, Q. Wang, Z. Hou, J. Wang, The applications of MOFs related materials in photo/electrochemical decontamination: an updated review. Chem. Eng. J. 450, 138326 (2022). https://doi.org/10.1016/j.cej.2022.138326

    Article  CAS  Google Scholar 

  16. B. You, N. Jiang, M. Sheng, S. Gul, J. Yano, Y. Sun, High-performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks. Chem. Mater. 27, 7636–7642 (2015). https://doi.org/10.1021/acs.chemmater.5b02877

    Article  CAS  Google Scholar 

  17. T. Noor, S. Pervaiz, N. Iqbal, H. Nasir, N. Zaman, M. Sharif, E. Pervaiz, Nanocomposites of NiO/CuO based MOF with rGO: an efficient and robust electrocatalyst for methanol oxidation reaction in DMFC. Nanomaterials 10, 1–18 (2020). https://doi.org/10.3390/nano10081601

    Article  CAS  Google Scholar 

  18. Y. Zhang, J. Zhou, X. Chen, Q. Feng, W. Cai, MOF-derived C-doped ZnO composites for enhanced photocatalytic performance under visible light. J. Alloys Compd. 777, 109–118 (2019). https://doi.org/10.1016/j.jallcom.2018.10.383

    Article  CAS  Google Scholar 

  19. X. Qin, T. Qiang, L. Chen, S. Wang, Construction of 3D N-CQD/MOF-5 photocatalyst to improve the photocatalytic performance of MOF-5 by changing the electron transfer path. Microporous Mesoporous Mater. 315, 110889 (2021). https://doi.org/10.1016/j.micromeso.2021.110889

    Article  CAS  Google Scholar 

  20. X. Zhao, B. Pattengale, D. Fan, Z. Zou, Y. Zhao, J. Du, J. Huang, C. Xu, Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. ACS Energy Lett. 3, 2520–2526 (2018). https://doi.org/10.1021/acsenergylett.8b01540

    Article  CAS  Google Scholar 

  21. C. Yang, C. Yang, W.J. Cai, B. Bin Yu, B. Bin Yu, H. Qiu, M.L. Li, L.W. Zhu, Z. Yan, L. Hou, Y.Y. Wang, Performance enhancement of oxygen evolution reaction through incorporating bimetallic electrocatalysts in two-dimensional metal-organic frameworks. Catal. Sci. Technol. 10, 3897–3903 (2020). https://doi.org/10.1039/d0cy00567c

    Article  CAS  Google Scholar 

  22. W. Sun, X. Tian, J. Liao, H. Deng, C. Ma, C. Ge, J. Yang, W. Huang, Assembly of a highly active iridium-based oxide oxygen evolution reaction catalyst by using metal-organic framework self-dissolution. ACS Appl. Mater. Interfaces. 12, 29414–29423 (2020). https://doi.org/10.1021/acsami.0c08358

    Article  CAS  Google Scholar 

  23. Z. Wang, X. Jiao, D. Chen, C. Li, M. Zhang, Porous copper/zinc bimetallic oxides derived from mofs for efficient photocatalytic reduction of co2 to methanol. Catalysts 10, 1–7 (2020). https://doi.org/10.3390/catal10101127

    Article  CAS  Google Scholar 

  24. X. Du, H. Su, X. Zhang, Metal-organic framework-derived Cu-doped Co9S8 nanorod array with less low-valence co sites as highly efficient bifunctional electrodes for overall water splitting. ACS Sustain. Chem. Eng. 7, 16917–16926 (2019). https://doi.org/10.1021/acssuschemeng.9b04739

    Article  CAS  Google Scholar 

  25. B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008). https://doi.org/10.1021/ja7106146

    Article  CAS  Google Scholar 

  26. M. Fiaz, M. Kashif, M. Fatima, S.R. Batool, M.A. Asghar, M. Shakeel, M. Athar, Synthesis of efficient TMS@MOF-5 catalysts for oxygen evolution reaction. Catal. Lett. 150, 2648–2659 (2020). https://doi.org/10.1007/s10562-020-03155-6

    Article  CAS  Google Scholar 

  27. X.J. Kong, J.R. Li, An overview of metal-organic frameworks for green chemical engineering. Engineering 7, 1115–1139 (2021). https://doi.org/10.1016/j.eng.2021.07.001

    Article  CAS  Google Scholar 

  28. Y. Yang, Y. Yang, Y. Liu, S. Zhao, Z. Tang, Metal-organic frameworks for electrocatalysis: beyond their derivatives. Small Sci. 1, 2100015 (2021). https://doi.org/10.1002/smsc.202100015

    Article  CAS  Google Scholar 

  29. J. Gao, Q. Huang, Y. Wu, Y.-Q. Lan, B. Chen, Metal-organic frameworks for photo/electrocatalysis. Adv. Energy Sustain. Res. 2, 2100033 (2021). https://doi.org/10.1002/aesr.202100033

    Article  CAS  Google Scholar 

  30. G. Sığırcık, T. Tüken, ZnO/CuO hybrid films synthesized by sequential application of electrochemical and spin coating technique. J. Mater. Sci. Mater. Electron. 31, 17855–17871 (2020). https://doi.org/10.1007/s10854-020-04339-x

    Article  CAS  Google Scholar 

  31. F. Tezcan, A. Mahmood, G. Kardaş, The investigation of Cu2O electrochemical deposition time effect on ZnO for water splitting. J. Mol. Struct. 1193, 342–347 (2019). https://doi.org/10.1016/j.molstruc.2019.05.052

    Article  CAS  Google Scholar 

  32. S. Jiang, K. Lin, M. Cai, ZnO nanomaterials: current advancements in antibacterial mechanisms and applications. Front. Chem. 8, 1–5 (2020). https://doi.org/10.3389/fchem.2020.00580

    Article  CAS  Google Scholar 

  33. K.A. Adegoke, N.W. Maxakato, Porous metal-organic framework (MOF)-based and MOF-derived electrocatalytic materials for energy conversion. Mater. Today Energy 21, 100816 (2021). https://doi.org/10.1016/j.mtener.2021.100816

    Article  CAS  Google Scholar 

  34. A. Parkash, Synthesis of bimetal doped metal-organic framework (MOF-5): an electrocatalyst with low noble metal content and high electrochemical activity. ECS J. Solid State Sci. Technol. 9, 75002 (2020). https://doi.org/10.1149/2162-8777/abade8

    Article  CAS  Google Scholar 

  35. H.M. Yang, X. Liu, X.L. Song, T.L. Yang, Z.H. Liang, C.M. Fan, In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr. Trans. Nonferrous Met. Soc. China (English Ed.) 25, 3987–3994 (2015). https://doi.org/10.1016/S1003-6326(15)64047-X

    Article  CAS  Google Scholar 

  36. Y. Song, Y. Chen, J. Wu, Y. Fu, R. Zhou, S. Chen, L. Wang, Hollow metal organic frameworks-derived porous ZnO/C nanocages as anode materials for lithium-ion batteries. J. Alloys Compd. 694, 1246–1253 (2017). https://doi.org/10.1016/j.jallcom.2016.10.110

    Article  CAS  Google Scholar 

  37. C. Wei, R.R. Rao, J. Peng, B. Huang, I.E.L. Stephens, M. Risch, Z.J. Xu, Y. Shao-Horn, Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1–24 (2019). https://doi.org/10.1002/adma.201806296

    Article  CAS  Google Scholar 

  38. P.R. Deshmukh, Y. Sohn, W.G. Shin, Chemical synthesis of ZnO nanorods: Investigations of electrochemical performance and photo-electrochemical water splitting applications. J. Alloys Compd. 711, 573–580 (2017). https://doi.org/10.1016/j.jallcom.2017.04.030

    Article  CAS  Google Scholar 

  39. S. Li, E. Li, X. An, X. Hao, Z. Jiang, G. Guan, Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. Nanoscale 13, 12788–12817 (2021). https://doi.org/10.1039/d1nr02592a

    Article  CAS  Google Scholar 

  40. Y. Yan, B.Y. Xia, B. Zhao, X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 4, 17587–17603 (2016). https://doi.org/10.1039/C6TA08075H

    Article  CAS  Google Scholar 

  41. T. Munawar, M. Shahid, F. Mukhtar, S. Manzoor, M. Naeem, M. Riaz, A. Hussain, F. Iqbal, Superior electrochemical performance of neodymium oxide-based Nd2CeMO3 (M = Er, Sm, V) nanostructures for supercapacitor application. J. Electroanal. Chem. 920, 116614 (2022). https://doi.org/10.1016/j.jelechem.2022.116614

    Article  CAS  Google Scholar 

  42. T. Munawar, M. Shahid, F. Mukhtar, S. Manzoor, M. Naeem, F. Iqbal, Surfactant-assisted facile synthesis of petal-nanoparticle interconnected nanoflower like NiO nanostructure for supercapacitor electrodes material. Mater. Sci. Eng. B. 284, 115900 (2022). https://doi.org/10.1016/j.mseb.2022.115900

    Article  CAS  Google Scholar 

  43. R.F. Savinell, Electrochemically Active Surface Area. J. Electrochem. Soc. 137, 489 (1990). https://doi.org/10.1149/1.2086468

    Article  CAS  Google Scholar 

  44. P. Connor, J. Schuch, B. Kaiser, W. Jaegermann, The determination of electrochemical active surface area and specific capacity revisited for the system MnOx as an oxygen evolution catalyst. Zeitschrift Fur Phys. Chemie. 234, 979–994 (2020). https://doi.org/10.1515/zpch-2019-1514

    Article  CAS  Google Scholar 

  45. L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 49, 3072–3106 (2020). https://doi.org/10.1039/d0cs00013b

    Article  CAS  Google Scholar 

  46. M. Sabo, A. Henschel, H. Fröde, E. Klemm, S. Kaskel, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. J. Mater. Chem. 17, 3827–3832 (2007). https://doi.org/10.1039/b706432b

    Article  CAS  Google Scholar 

  47. L. Zhang, Y.H. Hu, A systematic investigation of decomposition of nano Zn4O(C 8H4O4)3 metal-organic framework. J. Phys. Chem. C. 114, 2566–2572 (2010). https://doi.org/10.1021/jp911043r

    Article  CAS  Google Scholar 

  48. T. Munawar, A. Bashir, M.S. Nadeem, F. Mukhtar, S. Manzoor, M.N. Ashiq, S.A. Khan, M. Koc, F. Iqbal, Core-shell CeO2@C60 hybrid serves as a dual-functional catalyst: photocatalyst for organic pollutant degradation and electrocatalyst for oxygen evolution reaction. Ceram. Int. 49, 8447–8462 (2022). https://doi.org/10.1016/j.ceramint.2022.11.008

    Article  CAS  Google Scholar 

  49. H.L. Tan, R. Amal, Y.H. Ng, Exploring the different roles of particle size in photoelectrochemical and photocatalytic water oxidation on BiVO4. ACS Appl. Mater. Interfaces 8, 28607–28614 (2016). https://doi.org/10.1021/acsami.6b09076

    Article  CAS  Google Scholar 

  50. S. Wang, X. Xie, W. Xia, J. Cui, S. Zhang, X. Du, Study on the structure activity relationship of the crystal MOF-5 synthesis, thermal stability and N2adsorption property. High Temp. Mater. Process. 39, 171–177 (2020). https://doi.org/10.1515/htmp-2020-0034

    Article  CAS  Google Scholar 

  51. M.Z. Hussain, A. Schneemann, R.A. Fischer, Y. Zhu, Y. Xia, MOF derived porous ZnO/C nanocomposites for efficient dye photodegradation. ACS Appl. Energy Mater. 1, 4695–4707 (2018). https://doi.org/10.1021/acsaem.8b00822

    Article  CAS  Google Scholar 

  52. C. Hu, X. Hu, R. Li, Y. Xing, MOF derived ZnO/C nanocomposite with enhanced adsorption capacity and photocatalytic performance under sunlight. J. Hazard Mater. 385, 121599 (2020). https://doi.org/10.1016/j.jhazmat.2019.121599

    Article  CAS  Google Scholar 

  53. W. Zhou, N. Liu, C. Li, L. Yu, Z. Zhang, C. Li, X. Yan, Electromagnetic wave absorption of inexpensive C/ZnO composites derived from zinc-based acrylate resins. Ceram. Int. 47, 27002–27011 (2021). https://doi.org/10.1016/j.ceramint.2021.06.113

    Article  CAS  Google Scholar 

  54. T. Munawar, M.S. Nadeem, F. Mukhtar, S. Manzoor, M.N. Ashiq, S. Batool, M. Hasan, F. Iqbal, Enhanced photocatalytic, antibacterial, and electrochemical properties of CdO-based nanostructures by transition metals co-doping. Adv. Powder Technol. 33, 103451 (2022). https://doi.org/10.1016/j.apt.2022.103451

    Article  CAS  Google Scholar 

  55. S. Manzoor, M.F. Ashiq, M. Usman, M. Sadaqat, K. Mahmood, T. Munawar, F. Iqbal, M.M. Al-Anazy, M.N. Ashiq, M. Najam-ul-Haq, Development of excellent and novel flowery zirconia/cadmium sulfide nanohybrid electrode: for high performance electrochemical supercapacitor application. J. Energy Storage 40, 102718 (2021). https://doi.org/10.1016/j.est.2021.102718

    Article  Google Scholar 

  56. S. Liu, C. Li, J. Yu, Q. Xiang, Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 13, 2533–2541 (2011). https://doi.org/10.1039/c0ce00295j

    Article  CAS  Google Scholar 

  57. Z. Yu, Y. Bai, S. Zhang, Y. Liu, N. Zhang, G. Wang, J. Wei, Q. Wu, K. Sun, Metal-organic framework-derived Co3ZnC/Co embedded in nitrogen-doped carbon nanotube-grafted carbon polyhedra as a high-performance electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 10, 6245–6252 (2018). https://doi.org/10.1021/acsami.7b16130

    Article  CAS  Google Scholar 

  58. P.M. Perillo, M.N. Atia, C-doped ZnO nanorods for photocatalytic degradation of p-aminobenzoic acid under sunlight. Nano Struct. Nano Objects 10, 125–130 (2017). https://doi.org/10.1016/j.nanoso.2017.04.001

    Article  CAS  Google Scholar 

  59. C. Xu, G. Xu, Y. Liu, G. Wang, A simple and novel route for the preparation of ZnO nanorods. Solid State Commun. 122, 175–179 (2002). https://doi.org/10.1016/S0038-1098(02)00114-X

    Article  CAS  Google Scholar 

  60. Z. Liu, H. Bai, S. Xu, D.D. Sun, Hierarchical CuO/ZnO “corn-like” architecture for photocatalytic hydrogen generation. Int. J. Hydrogen Energy 36, 13473–13480 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.137

    Article  CAS  Google Scholar 

  61. O.I. Gyrdasova, E.V. Shalaeva, V.N. Krasil’nikov, L.Y. Buldakova, I.V. Baklanova, M.A. Melkozerova, M.V. Kuznetsov, M.Y. Yanchenko, Effect of Cu+ ions on the structure, morphology, optical and photocatalytic properties of nanostructured ZnO. Mater. Charact. (2021). https://doi.org/10.1016/j.matchar.2021.111384

    Article  Google Scholar 

  62. T. Wang, X. Zhang, X. Zhu, Q. Liu, S. Lu, A.M. Asiri, Y. Luo, X. Sun, Hierarchical CuO@ZnCo LDH heterostructured nanowire arrays toward enhanced water oxidation electrocatalysis. Nanoscale 12, 5359–5362 (2020). https://doi.org/10.1039/d0nr00752h

    Article  CAS  Google Scholar 

  63. L. Yin, X. Du, C. Di, M. Wang, K. Su, Z. Li, In-situ transformation obtained defect-rich porous hollow CuO@CoZn-LDH nanoarrays as self-supported electrode for highly efficient overall water splitting. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.128809

    Article  Google Scholar 

  64. C. Liu, F. Meng, L. Zhang, D. Zhang, S. Wei, K. Qi, J. Fan, H. Zhang, X. Cui, CuO/ZnO heterojunction nanoarrays for enhanced photoelectrochemical water oxidation. Appl. Surf. Sci. 469, 276–282 (2019). https://doi.org/10.1016/j.apsusc.2018.11.054

    Article  CAS  Google Scholar 

  65. M. Moayed Mohseni, M. Jouyandeh, S. Mohammad Sajadi, A. Hejna, S. Habibzadeh, A. Mohaddespour, N. Rabiee, H. Daneshgar, O. Akhavan, M. Asadnia, M. Rabiee, S. Ramakrishna, R. Luque, M. Reza Saeb, Metal-organic frameworks (MOF) based heat transfer: a comprehensive review. Chem. Eng. J. 449, 137700 (2022). https://doi.org/10.1016/j.cej.2022.137700

    Article  CAS  Google Scholar 

  66. R.A. Wahyuono, C. Schmidt, A. Dellith, J. Dellith, M. Schulz, M. Seyring, M. Rettenmayr, J. Plentz, B. Dietzek, ZnO nanoflowers-based photoanodes: aqueous chemical synthesis, microstructure and optical properties. Open Chem. 14, 158–169 (2016). https://doi.org/10.1515/chem-2016-0016

    Article  CAS  Google Scholar 

  67. S. Podili, D. Geetha, P.S. Ramesh, Tuning the dopant (Zn2+) composition for uniform mesoporous Zn–CuS nanoflower via hydrothermal approach as a novel electrode material for high-rate supercapacitor. SN Appl. Sci. 2, 1–12 (2020). https://doi.org/10.1007/s42452-020-2668-5

    Article  CAS  Google Scholar 

  68. J. Singh, R.K. Soni, Fabrication of hydroxyl group-enriched mixed-phase TiO2 nanoflowers consisting of nanoflakes for efficient photocatalytic activity. J. Mater. Sci. Mater. Electron. 31, 12546–12560 (2020). https://doi.org/10.1007/s10854-020-03805-w

    Article  CAS  Google Scholar 

  69. H. Liu, L. Shi, D. Li, J. Yu, H.M. Zhang, S. Ullah, B. Yang, C. Li, C. Zhu, J. Xu, Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes. J. Power Sour. 387, 64–71 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.047

    Article  CAS  Google Scholar 

  70. Z. Alves, C. Nunes, P. Ferreira, Unravelling the role of synthesis conditions on the structure of zinc oxide-reduced graphene oxide nanofillers. Nanomaterials 11, 2149 (2021). https://doi.org/10.3390/nano11082149

    Article  CAS  Google Scholar 

  71. S.M. Pawar, B.S. Pawar, B. Hou, J. Kim, A.T. Aqueel Ahmed, H.S. Chavan, Y. Jo, S. Cho, A.I. Inamdar, J.L. Gunjakar, H. Kim, S. Cha, H. Im, Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications. J. Mater. Chem. A 5, 12747–12751 (2017). https://doi.org/10.1039/c7ta02835k

    Article  CAS  Google Scholar 

  72. B. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng, Z. Zhou, M. Zhou, S. Li, Y. Wang, C. Cheng, Designing MOF nanoarchitectures for electrochemical water splitting. Adv. Mater. (2021). https://doi.org/10.1002/adma.202006042

    Article  Google Scholar 

  73. H. Zhang, J. Nai, L. Yu, X.W. (David) Lou, Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1, 77–107 (2017). https://doi.org/10.1016/j.joule.2017.08.008

    Article  CAS  Google Scholar 

  74. S. Anantharaj, S. Noda, Appropriate use of electrochemical impedance spectroscopy in water splitting electrocatalysis. ChemElectroChem 7, 2297–2308 (2020). https://doi.org/10.1002/celc.202000515

    Article  CAS  Google Scholar 

  75. S. Anantharaj, S. Kundu, Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting? ACS Energy Lett. 4, 1260–1264 (2019). https://doi.org/10.1021/acsenergylett.9b00686

    Article  CAS  Google Scholar 

  76. M. Ubaidullah, A.M. Al-Enizi, S. Shaikh, M.A. Ghanem, R.S. Mane, Waste PET plastic derived ZnO@NMC nanocomposite via MOF-5 construction for hydrogen and oxygen evolution reactions. J. King Saud Univ. Sci. 32, 2397–2405 (2020). https://doi.org/10.1016/j.jksus.2020.03.025

    Article  Google Scholar 

  77. H. Xu, P. Song, C. Liu, Y. Zhang, Y. Du, Facile construction of ultrafine nickel-zinc oxyphosphide nanosheets as high-performance electrocatalysts for oxygen evolution reaction. J. Coll. Interface Sci. 530, 58–66 (2018). https://doi.org/10.1016/j.jcis.2018.06.061

    Article  CAS  Google Scholar 

  78. A. Xie, J. Zhang, X. Tao, J. Zhang, B. Wei, W. Peng, Y. Tao, S. Luo, Nickel-based MOF derived Ni@NiO/N–C nanowires with core-shell structure for oxygen evolution reaction. Electrochim. Acta. 324, 134814 (2019). https://doi.org/10.1016/j.electacta.2019.134814

    Article  CAS  Google Scholar 

  79. M. Fiaz, M. Kashif, J.H. Shah, M.N. Ashiq, D.H. Gregory, S.R. Batool, M. Athar, Incorporation of MnO2 nanoparticles into MOF-5 for efficient oxygen evolution reaction. Ionics (Kiel) 27, 2159–2167 (2021). https://doi.org/10.1007/s11581-021-03987-1

    Article  CAS  Google Scholar 

  80. H. Guan, N. Wang, X. Feng, S. Bian, W. Li, Y. Chen, FeMn bimetallic MOF directly applicable as an efficient electrocatalyst for overall water splitting. Coll. Surf. A Physicochem. Eng. Asp. 624, 126596 (2021). https://doi.org/10.1016/j.colsurfa.2021.126596

    Article  CAS  Google Scholar 

  81. R. Zhao, B. Ni, L. Wu, P. Sun, T. Chen, Carbon-based iron-cobalt phosphate FeCoP/C as an effective ORR/OER/HER trifunctional electrocatalyst. Coll. Surf. A Physicochem. Eng. Asp. 635, 128118 (2022). https://doi.org/10.1016/j.colsurfa.2021.128118

    Article  CAS  Google Scholar 

  82. N. Nazar, S. Manzoor, Y. ur Rehman, I. Bibi, D. Tyagi, A.H. Chughtai, R.S. Gohar, M. Najam-Ul-Haq, M. Imran, M.N. Ashiq, Metal-organic framework derived CeO2/C nanorod arrays directly grown on nickel foam as a highly efficient electrocatalyst for OER. Fuel 307, 121823 (2022). https://doi.org/10.1016/j.fuel.2021.121823

    Article  CAS  Google Scholar 

  83. M. Rinawati, Y.-X. Wang, K.-Y. Chen, M.-H. Yeh, Designing a spontaneously deriving NiFe-LDH from bimetallic MOF-74 as an electrocatalyst for oxygen evolution reaction in alkaline solution. Chem. Eng. J. 423, 130204 (2021). https://doi.org/10.1016/j.cej.2021.130204

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Islamia University of Bahawalpur for supporting Research Project No. 3885/ORIC/IUB.2021 entitled: ‘Multifunctional Materials for Energy Storage, Photocatalysis, and Antibacterial Applications’ granted by ORIC. The authors also acknowledge the Qatar Environment and Energy Research Institute (QEERI)’s core lab, Hamad Bin Khalifa University, for performing XPS by Dr. Yongfeng Tong, FTIR by Dr. Kamal Mroue, and TEM characterization by Janarthanan Ponraj.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Iqbal.

Ethics declarations

Conflict of interest

We hereby declare that: we have no pecuniary or other personal interest, direct or indirect, in any matter that raises or may raise a conflict with our Research work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 150 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munawar, T., Bashir, A., Mukhtar, F. et al. Scalable synthesis of MOFs-derived ZnO/C nanohybrid: efficient electrocatalyst for oxygen evolution reaction in alkaline medium. J. Korean Ceram. Soc. 60, 918–934 (2023). https://doi.org/10.1007/s43207-023-00319-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00319-z

Keywords

Navigation