Skip to main content
Log in

Study of the solar perovskites: XZnF3 (X = Ag, Li or Na) by DFT and TDDFT methods

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this work, we have applied the density functional theory (DFT) and time-dependent density-functional theory (TDDFT) to study and discuss the different properties of the inorganic perovskites XZnF3 (X = Ag, Li or Na). In fact, we have presented the structural, electronic and optical properties of the Halide Perovskite XZnF3 (X = Ag, Li or Na). Such materials are in great demand for solar cell uses. To conduct this study, we have applied the Quantum Espresso package using the two methods: GGA–PBE and GGA–PBESol. The different lattice parameter a (Å) values have been used to deduce the energy optimum of the perovskites XZnF3 (X = Ag, Li or Na). Besides, the total and partial density of states (DOS) and the band structure of these materials have been illustrated for the two situations: in the presence and the absence of the Spin Orbit Coupling (SOC) approximation. To complete this study, we have presented the optical properties of the XZnF3 (X = Ag, Li or Na) materials. In fact, such properties have been investigated when exploring the real and imaginary parts of the corresponding dielectric function. To reach this goal, we have applied the two approximations: the GGA–PBE and GGA–PBESOL. Our results reveal high transparency of the electromagnetic radiations in the energy range between (0.0 ħω) Ry and (0.25 ħω) Ry. A notable peak of the imaginary part, has been found at about (0.15 ħω) Ry for the studied materials, confirms the transition from the top of valence band to the bottom of conduction band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Idrissi, S. Ziti, H. Labrim, L. Bahmad, Band gaps of the solar perovskites photovoltaic CsXCl3 (X = Sn, Pb or Ge). Mater. Sci. Semicond. Process. 122, 105484 (2021). https://doi.org/10.1016/j.mssp.2020.105484

    Article  CAS  Google Scholar 

  2. S. Idrissi, H. Labrim, L. Bahmad, A. Benyoussef, Study of the solar perovskite CsMBr 3 (M = Pb or Ge) photovoltaic materials: band-gap engineering. Solid State Sci. 118, 106679 (2021). https://doi.org/10.1016/j.solidstatesciences.2021.106679

    Article  CAS  Google Scholar 

  3. S. Idrissi, H. Labrim, L. Bahmad, A. Benyoussef, DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications. Chem. Phys. Lett. 766, 138347 (2021). https://doi.org/10.1016/j.cplett.2021.138347

    Article  CAS  Google Scholar 

  4. S. Idrissi, H. Labrim, L. Bahmad et al., Structural, electronic, and magnetic properties of the rare earth-based solar perovskites: GdAlO3, DyAlO3, and HoAlO3. J Supercond Nov. Magn (2021). https://doi.org/10.1007/s10948-021-05900-

    Article  Google Scholar 

  5. X. Fan, W. Zheng, X. Chen, D.J. Singh, PLoS One 9 (2014).

  6. L.S. Kouchaksaraie, Int. J. Math., Comput. Phys., Electr. Comput. Eng. 5 (2011) 1680.

  7. Y. Wei, H. Gui, Z. Zhao, J. Li, Y. Liu, S. Xin, X. Li, W. Xie, AIP Adv. 4, 127134 (2014)

    Article  Google Scholar 

  8. J.W. Fergus, Sens. Actu. B 123, 1169 (2007)

    Article  CAS  Google Scholar 

  9. H. Takashima, K. Shimada, N. Miura, T. Katsumata, Y. Inaguma, K. Ueda, M. Itoh, Adv. Mater. 21, 3699 (2009)

    Article  CAS  Google Scholar 

  10. H. Xiao, W. Dong, Y. Guo, Y. Wang, H. Zhong, Q. Li, M.-M. Yang, Adv. Mater. 31, 1805802 (2019)

    Article  Google Scholar 

  11. C.N.R. Rao, Ferroelectrics 102, 297 (1990)

    Article  CAS  Google Scholar 

  12. R.N. Mahato, K. Sethupathi, V. Sankaranarayanan, J. Appl. Phys. 107, 09D714 (2010)

    Article  Google Scholar 

  13. T. Geraldine Baca, C. Dewei, X. Xinrun, L. Sean, Curr. Phys. Chem. 4 (2014) 256.

  14. M.I. Hussain, R.M.A. Khalil, F. Hussain, M. Imran, A.M. Rana, S. Kim, Mater. Res. Express 7, 015906 (2020)

    Article  Google Scholar 

  15. R.J.H. Voorhoeve, D.W. Johnson, J.P. Remeika, P.K. Gallagher, Science 195 (1977).

  16. B.L. Chamberland, C.W. Moeller, J. Solid State Chem., 5 (39) (1972)

  17. K. Oka et al., J. Am. Chem. Soc. 132, 9438 (2010)

    Article  CAS  Google Scholar 

  18. A.A. Belik, M. Azuma, T. Saito, Y. Shimakawa, M. Takano, Chem. Mater. 17, 269 (2005)

    Article  CAS  Google Scholar 

  19. M.L. Boucher, D.R. Peacor Z. Kristallogr, 126 (98) (1968)

  20. D.S. Kan et al., Nat. Mater. 4, 816 (2005)

    Article  CAS  Google Scholar 

  21. H.T. Chen, P. Raghunath, M.C. Lin, Langmuir 27, 6787 (2011)

    Article  CAS  Google Scholar 

  22. Z. Ali, I. Ahmad, J. Electron. Mater. 42, 438 (2013)

    Article  CAS  Google Scholar 

  23. C.L. Huang, M.H. Weng, Mater. Res. Bull. 36, 2741 (2001)

    Article  CAS  Google Scholar 

  24. J. Dailly, S. Fourcade, A. Largeteau, F. Mauvy, J.C. Grenier, M. Marrony, Electrochim. Acta 55, 5847 (2010)

    Article  CAS  Google Scholar 

  25. X. Li, H. Zhao, X. Zhou, N. Xu, Z. Xie, N. Chen, Int. J. Hydrogen Energy 35, 7913 (2010)

    Article  CAS  Google Scholar 

  26. Z. Chao, W. Chun-Lei, L. Ji-Chao, Y. Kun, Chin. Phys. Soc. 16, 1422 (2007)

    Article  CAS  Google Scholar 

  27. J.A. Rodriguez, A. Etxeberria, L. González, A. Maiti, J. Chem. Phys. 117, 2699 (2002)

    Article  CAS  Google Scholar 

  28. A. Watras, R. Pązik, P.J. Dereń, J. Lumin. 133, 35 (2013)

    Article  CAS  Google Scholar 

  29. K. Ellmer, Nat. Photon. 6, 808 (2012)

    Article  Google Scholar 

  30. T. Schumann, S. Raghavan, K. Ahadi, H. Kim, S. Stemmer, J. Vac. Sci. Technol. 34, 050601 (2016)

    Article  Google Scholar 

  31. V.R.S.K. Chaganti, A. Prakash, J. Yue, B. Jalan, S.J. Koester, I.E.E.E. Electron, Device Lett. 39, 1381 (2018)

    Article  CAS  Google Scholar 

  32. S. Hiadsi, H. Bouafia, B. Sahli, B. Abidri, A. Bouaza, A. Akriche, Structural, mechanical, electronic and thermal properties of KZnF3 and AgZnF3 Perovskites: FP-(L) APW+ lo calculations. Solid State Sci. 58, 113 (2016)

    Article  Google Scholar 

  33. G. Geguzina, V. Sakhnenko, Correlation between the lattice parameters of crystals with perovskite structure. Crystallogr. Rep. 49(1), 519 (2004)

    Article  Google Scholar 

  34. H.-L. Sun, C.-L. Yang, M.-S. Wang, X.-G. Ma, Y.-G. Yi, High thermoelectric efficiency fluoride perovskite materials of AgMF3 (M= Zn, Cd). Mater. Today Energy 19, 100611 (2021)

    Article  CAS  Google Scholar 

  35. Abderrahim HL, Prédiction théorique de l’effet de pression sur les propriétés structurales, électroniques et mécaniques des pérovskites XZnF3 (X = Li, K, Rb) (2014) Université des sciences et de la technologie Mohamed Boudiaf d'Oran, https://library.crti.dz/mg462.

  36. V. Luana, A. Costales, A.M. Pendás, Ions in crystals: the topology of the electron density in ionic materials. II. The cubic alkali halide perovskites. Phys. Rev. B 55, 4285–4297 (1997). https://doi.org/10.1103/PhysRevB.55.4285

    Article  CAS  Google Scholar 

  37. R. Arar et al., Mater. Sci. Semicond. Process. 33, 127 (2015)

    Article  CAS  Google Scholar 

  38. S. Idrissi, S. Ziti, H. Labrim et al., Half-metallicity and magnetism in the full heusler alloy Fe2MnSn with L21 and XA stability ordering phases. J. Low Temp. Phys. 202, 343–359 (2021). https://doi.org/10.1007/s10909-021-02562-2

    Article  CAS  Google Scholar 

  39. S. Idrissi, S. Ziti, H. Labrim, L. Bahmad, Sulfur doping effect on the electronic properties of zirconium dioxide ZrO2. Mater. Sci. Eng. B 270, 115200 (2021). https://doi.org/10.1016/j.mseb.2021.115200

    Article  CAS  Google Scholar 

  40. S. Idrissi, H. Labrim, S. Ziti, L. Bahmad, A DFT study of the equiatomic quaternary Heusler alloys ZnCdXMn (X=Pd, Ni or Pt). Solid State Commun. 331, 114292 (2021). https://doi.org/10.1016/j.ssc.2021.114292

    Article  CAS  Google Scholar 

  41. S. Idrissi, H. Labrim, S. Ziti, L. Bahmad, Investigation of the physical properties of the equiatomic quaternary Heusler alloys CoYCrZ (Z= Si and Ge): a DFT study. J. Appl. Phys. A 126(3), 190 (2020)

    Article  CAS  Google Scholar 

  42. S. Idrissi, H. Labrim, S. Ziti, L. Bahmad, Structural, electronic, magnetic properties and critical behavior of the equiatomic quaternary Heusler alloy CoFeTiSn. Phys. Lett. A (2020). https://doi.org/10.1016/j.physleta.2020.126453

    Article  Google Scholar 

  43. S. Idrissi, H. Labrim, S. Ziti et al., Characterization of the equiatomic quaternary heusler alloy ZnCdRhMn: structural, electronic, and magnetic properties. J. Supercond. Nov. Magn. 33, 3087–3095 (2020). https://doi.org/10.1007/s10948-020-05561-8

    Article  CAS  Google Scholar 

  44. S. Idrissi, S. Ziti, H. Labrim et al., Critical magnetic behavior of the rare earth-based alloy GdN: monte carlo simulations and density functional theory method. J. Mater. Eng. Perform. 29, 7361–7368 (2020). https://doi.org/10.1007/s11665-020-05214-w

    Article  CAS  Google Scholar 

  45. S. Idrissi, H. Labrim, L. Bahmad et al., Structural, electronic, and magnetic properties of the rare earth-based solar perovskites: GdAlO3, DyAlO3, and HoAlO3. J. Supercond. Nov. Magn. 34, 2371–2380 (2021). https://doi.org/10.1007/s10948-021-05900-3

    Article  CAS  Google Scholar 

  46. P. Giannouzzi et al., J. Phys. Condens. Matter 21, 395502 (2009). http://www.Quantum-espresso.org

  47. D.R. Hamann, M. Schlüter, C. Chiang, Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494 (1979)

    Article  CAS  Google Scholar 

  48. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)

    Article  CAS  Google Scholar 

  49. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  50. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  51. T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768 (1992)

    Article  CAS  Google Scholar 

  52. R. Burriel et al., J. Phys. C. Solid State Phys. 20, 2819–2827 (1987)

    Article  CAS  Google Scholar 

  53. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Article  CAS  Google Scholar 

  54. S. Hiadsi, H. Bouafia, B. Sahli, B. Abidri, A. Bouaza, A. Akriche, Structural, mechanical, electronic and thermal properties of KZnF3 and AgZnF3 Perovskites: FP-(L)APW+lo calculations. Solid State Sci. 58, 1–13 (2016). https://doi.org/10.1016/j.solidstatesciences.2016.05.005

    Article  CAS  Google Scholar 

  55. G.A. Geguzina, V.P. Sakhnenko, Crystallogr. Rep. 49, 15 (2004)

    Article  CAS  Google Scholar 

  56. O. Muller, R. Roy, The major ternary structural families (Springer, New York, Heidelberg, Berlin, 1974)

    Book  Google Scholar 

  57. Y. Uetsuji, S. Kumazawa, T. Ohnishi, K. Tsuchiya, E. Nakamachi, 72, 722, 1472–1478 (2006). https://doi.org/10.1299/kikaia.72.1472

  58. D.A.C. Garcia-Castro, N.A. Spaldin, A.H. Romero, E. Bousquet, Phys. Rev. B 89, 104107 (2022)

    Article  Google Scholar 

  59. B. Bakri, Z. Driss, S. Berri, R. Khenata, First-principles investigation for some physical properties of some fluoroperovskites compounds ABF3 (A 5K, Na; B 5Mg, Zn). Indian J. Phys. (2022). https://doi.org/10.1007/s12648-017-1055-6

    Article  Google Scholar 

  60. K. Yabana, G.F. Bertsch, Time-dependent local-density approximation in real time. Phys. Rev. B 54, 4484 (1996)

    Article  CAS  Google Scholar 

  61. J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Idrissi or L. Bahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest or relationship that could be appeared to influence the publication of this work in this Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrissi, S., Mounkachi, O., Bahmad, L. et al. Study of the solar perovskites: XZnF3 (X = Ag, Li or Na) by DFT and TDDFT methods. J. Korean Ceram. Soc. 60, 424–433 (2023). https://doi.org/10.1007/s43207-022-00277-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00277-y

Keywords

Navigation