Skip to main content
Log in

Thermal plasma arc discharge method for high-yield production of hexagonal AlN nanoparticles: synthesis and characterization

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Large scale with high-purity hexagonal aluminum nitride nanoparticles (AlN NPs) was synthesized using DC thermal plasma arc discharge method (TPAD). Argon gas was used as the plasma forming gas, while ammonia (NH3) gas was used as the reactive gas, which was fed into the reactor at a constant flow rate of 5 LPM. In order to optimize the process for high yield, the experiments were carried out at various plasma input powers, such as 1.5, 3.0, and 4.5 kW. Following the optimization, to examine the influence of using pure nitrogen gas, an experiment was also carried out in the nitrogen ambience. The phase identification and structural determination of the synthesized NPs were carried out using XRD and Raman spectroscopic analyses. While the morphology, particle size, and elemental compositions of the synthesized NPs were observed from SEM, HRTEM, XPS, and EDX analyses. The photoluminescence response was confirmed from the PL spectrum. The PL emission peaks observed around 440 nm (2.8 eV) and 601 nm (2.07 eV), respectively, which correspond to the UV blue and red band emissions of both AlN and Al/AlN NPs. The results show that the synthesized nano-AlN NPs exhibit excellent crystallinity with a high yield of approximately 210 g/h. The current plasma technology can be regarded as a perfect potential process for developing nano-AlN powders with improved efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.K.T. Kenry, S.F. Yu, AlN nanowires: Synthesis, physical properties, and nanoelectronics applications. J. Mater. Sci. 47, 5341–5360 (2012)

    Article  CAS  Google Scholar 

  2. C.K. Dixit, K. Pandey, Structural, optical and frequency dependent electrical behaviour of aluminum nitride (ALN) nanopowder. Int. J. Recent Technol. Eng. 8, 7928–7932 (2019)

    Google Scholar 

  3. K.T. Lai, C.H. Shih, Wu.C. Te, M.Y. Yang, C.S. Hsi, Preparation of aluminum nitride granules by a two-step heat treatment method. Adv. Powder Technol. 29, 849–854 (2018)

    Article  CAS  Google Scholar 

  4. C. Besleaga, V. Dumitru, L.M. Trinca, A.C. Popa, C.C. Negrila, Ł Kołodziejczyk, C.R. Luculescu, G.C. Ionescu, R.G. Ripeanu, A. Vladescu, G.E. Stan, Mechanical, corrosion and biological properties of room-temperature sputtered aluminum nitride films with dissimilar nanostructure. Nanomaterials 7, 1–26 (2017)

    Article  CAS  Google Scholar 

  5. A. Gurijala, R.B. Zando, J.L. Faust, J.R. Barber, L. Zhang, R.M. Erb, Castable and printable dielectric composites exhibiting high thermal conductivity via percolation-enabled phonon transport. Matter 2, 1015–1024 (2020)

    Article  Google Scholar 

  6. S. Kume, I. Yamada, K. Watari, I. Harada, K. Mitsuishi, High-thermal-conductivity AlN filler for polymer/ceramics composites. J. Am. Ceram. Soc. 92, 153–156 (2009)

    Article  CAS  Google Scholar 

  7. J.W. Lee, W.J. Lee, S.M. Lee, Electrical behavior of aluminum nitride ceramics sintered with yttrium oxide and titanium oxide. J. Korean Ceram. Soc. 53, 635–640 (2016)

    Article  CAS  Google Scholar 

  8. H.J. Lee, W.S. Cho, H.J. Kim, H.T. Kim, S.S. Ryu, Effect of additive size on the densification and thermal conductivity of AlN ceramics with MgO-CaO-Al2O3-SiO2 additives. J. Korean Ceram. Soc. 54, 43–48 (2017)

    Article  CAS  Google Scholar 

  9. E. Lee, J.H. Pee, S.M. Lee, J.Y. Kim, W. Shim, Enhanced high-temperature electrical resistivity of aluminum nitride obtained by engineering a Schottky barrier at grain boundaries. J. Korean Phys. Soc. 77, 673–679 (2020)

    Article  CAS  Google Scholar 

  10. C.J. Bartel, C.L. Muhich, A.W. Weimer, C.B. Musgrave, Aluminum nitride hydrolysis enabled by hydroxyl-mediated surface proton hopping. ACS Appl. Mater. Interfaces 8, 18550–18559 (2016)

    Article  CAS  Google Scholar 

  11. Q. Wang, Q. Sun, P. Jena, Y. Kawazoe, Potential of AlN nanostructures as hydrogen storage materials. ACS Nano 3, 621–626 (2009)

    Article  CAS  Google Scholar 

  12. J. Zhu, Z. Zheng, C. Wang, J. Liu, Microstructure characterization of Al2O3–Mullite–AlN multiphase ceramic film on Cr/WCu substrate. J. Mater. Sci. Mater. Electron. 31, 5941–5947 (2020)

    Article  CAS  Google Scholar 

  13. M.I. Lerner, A.S. Lozhkomoev, A.V. Pervikov, O.V. Bakina, Synthesis of Al–Al2O3 and Al–Aln nanoparticle composites via electric explosion of wires. Russ. Phys. J. 59, 422–429 (2016)

    Article  CAS  Google Scholar 

  14. S. Fale, A. Likhite, J. Bhatt, Compressive, tensile and wear behavior of ex situ Al/AlN metal matrix nanocomposites. J. Compos. Mater. 49, 1917–1928 (2015)

    Article  CAS  Google Scholar 

  15. H. Yang, D. Zander, Y. Huang, K.U. Kainer, H. Dieringa, Individual/synergistic effects of Al and AlN on the microstructural evolution and creep resistance of Elektron21 alloy. Mater. Sci. Eng. A 777, 139072 (2020)

    Article  CAS  Google Scholar 

  16. L. Jia, K. Kondoh, H. Imai, M. Onishi, B. Chen, S.F. Li, Nano-scale AlN powders and AlN/Al composites by full and partial direct nitridation of aluminum in solid-state. J. Alloys Compd. 629, 184–187 (2015)

    Article  CAS  Google Scholar 

  17. T. Suehiro, N. Hirosaki, K. Komeya, Synthesis and sintering properties of aluminium nitride nanopowder prepared by the gas-reduction-nitridation method. Nanotechnology 14, 487–491 (2003)

    Article  CAS  Google Scholar 

  18. S. Qi, X. Mao, X. Li, M. Feng, B. Jiang, L. Zhang, Synthesis of AlN hexagonal bipyramids by carbothermal reduction nitridation. Mater. Lett. 174, 167–170 (2016)

    Article  CAS  Google Scholar 

  19. W.S. Jung, Synthesis of aluminum nitride powder from δ-alumina nanopowders under a mixed gas flow of nitrogen and hydrogen. Ceram. Int. 38, 871–874 (2012)

    Article  CAS  Google Scholar 

  20. D. Zhang, G. Mylsamy, X. Yang, Z. Xie, X. Su, F. Liang, B. Yang, Y. Dai, High purity and good dispersity AlN nanoparticles synthesized by an arc discharge with assistance of direct nitridation. Ceram. Int. 47, 16972–16979 (2021)

    Article  CAS  Google Scholar 

  21. K.I. Kim, S.C. Choi, J.H. Kim, W.S. Cho, K.T. Hwang, K.S. Han, Synthesis and characterization of high-purity aluminum nitride nanopowder by RF induction thermal plasma. Ceram. Int. 40, 8117–8123 (2014)

    Article  CAS  Google Scholar 

  22. C. Mandilas, E. Daskalos, G. Karagiannakis, A.G. Konstandopoulos, Synthesis of aluminium nanoparticles by arc plasma spray under atmospheric pressure. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 178, 22–30 (2013)

    Article  CAS  Google Scholar 

  23. T.H. Kim, S. Choi, D.W. Park, Effects of NH3 flow rate on the thermal plasma synthesis of AlN nanoparticles. J. Korean Phys. Soc. 63, 1864–1870 (2013)

    Article  CAS  Google Scholar 

  24. M.C. Sung, Y.M. Kuo, H.L. Te, C.H. Tsai, Two-stage plasma nitridation approach for rapidly synthesizing aluminum nitride powders. J. Mater. Res. 32, 1279–1286 (2017)

    Article  CAS  Google Scholar 

  25. S. Yugeswaran, P.V. Ananthapadmanabhan, L. Kumaresan, A. Kuberan, S. Sivakumar, G. Shanmugavelayutham, K. Ramachandran, Synthesis of zirconium nitride from zircon sand by transferred arc plasma assisted carbothermal reduction and nitridation process. Ceram. Int. 44, 14789–14796 (2018)

    Article  Google Scholar 

  26. Z. Tang, M. Hou, X. He, K. Ye, D. Zhang, Z. Xie, Y. Dai, F. Liang, Integrated purification of gadolinium and preparation of Gd2O3 nanoparticles by DC arc plasma. J. Rare Earths 39, 1574–1578 (2021)

    Article  CAS  Google Scholar 

  27. D. Zhang, Z. Xie, K. Zhang, H. Wang, T. Qu, W. Ma, B. Yang, Y. Dai, F. Liang, Y. Lei, T. Watanabe, Controlled regulation of the transformation of carbon nanomaterials under H2 mixture atmosphere by arc plasma. Chem. Eng. Sci. 241, 116695 (2021)

    Article  CAS  Google Scholar 

  28. S.B. Tharchanaa, K. Priyanka, K. Preethi, G. Shanmugavelayutham, Facile synthesis of Cu and CuO nanoparticles from copper scrap using plasma arc discharge method and evaluation of antibacterial activity. Mater. Technol. 36, 97–104 (2021)

    Article  CAS  Google Scholar 

  29. E.M. Koushika, G. Shanmugavelayutham, P. Saravanan, C. Balasubramanian, Rapid synthesis of nano-magnetite by thermal plasma route and its magnetic properties. Mater. Manuf. Process. 33, 1701–1707 (2018)

    Article  CAS  Google Scholar 

  30. C. Balasubramanian, V.P. Godbole, V.K. Rohatgi, A.K. Das, S.V. Bhoraskar, Synthesis of nanowires and nanoparticles of cubic aluminium nitride. Nanotechnology 15, 370–373 (2004)

    Article  CAS  Google Scholar 

  31. L. Li, G.H. NiA, Y.J. Zhao, Q.J. Guo, Q.F. Lin, S.Y. Sui, H.B. Xie, W.X. Duan, Synthesis of nano-AlN powders from Al wire by arc plasma at atmospheric pressure. Ceram. Int. 44, 21810–21815 (2018)

    Article  CAS  Google Scholar 

  32. M. Ghosh Chaudhuri, J. Basu, G.C. Das, S. Mukherjee, M.K. Mitra, A novel method of synthesis of nanostructured aluminum nitride through Sol-Gel route by in situ generation of nitrogen. J. Am. Ceram. Soc. 96, 385–390 (2013)

    Article  CAS  Google Scholar 

  33. Y.G. Cao, X.L. Chen, Y.C. Lan, J.Y. Li, Y.P. Xu, T. Xu, Q.L. Liu, J.K. Liang, Blue emission and Raman scattering spectrum from AlN nanocrystalline powders. J. Cryst. Growth 213, 198–202 (2000)

    Article  CAS  Google Scholar 

  34. Q. Wu, Z. Hu, X. Wang, Y. Lu, K. Huo, S. Deng, N. Xu, B. Shen, R. Zhang, Y. Chen, Extended vapor-liquid-solid growth and field emission properties of aluminium nitride nanowires. J. Mater. Chem. 13, 2024–2027 (2003)

    Article  CAS  Google Scholar 

  35. S. Revo, S. Hamamda, K. Ivanenko, O. Boshko, A. Djarri, A. Boubertakh, Thermal analysis of Al + 0.1% CNT ribbon. Nanoscale Res Lett. 10, 1–7 (2015)

    Article  CAS  Google Scholar 

  36. Q. He, M. Qin, M. Huang, H. Wu, H. Lu, H. Wang, X. Mu, Y. Wang, X. Qu, Synthesis of highly sinterable AlN nanopowders through sol-gel route by reduction-nitridation in ammonia. Ceram. Int. 45, 14568–14575 (2019)

    Article  CAS  Google Scholar 

  37. N. Arora, B.R. Jagirdar, Monodispersity and stability: case of ultrafine aluminium nanoparticles (<5 nm) synthesized by the solvated metal atom dispersion approach. J. Mater. Chem. 22, 9058–9063 (2012)

    Article  CAS  Google Scholar 

  38. X. Sauvage, F. Cuvilly, A. Russell, K. Edalati, Understanding the role of Ca segregation on thermal stability, electrical resistivity and mechanical strength of nanostructured aluminum. Mater. Sci. Eng. A 798, 140108 (2020). https://doi.org/10.1016/j.msea.2020.140108

    Article  CAS  Google Scholar 

  39. I. Krylov, B. Pokroy, D. Ritter, M. Eizenberg, A comparative study of AlN and Al2O3 based gate stacks grown by atomic layer deposition on InGaAs. J. Appl. Phys. 119, 084507 (2016). https://doi.org/10.1063/1.4942657

    Article  CAS  Google Scholar 

  40. W. Sun, Y. Li, Y. Yang, Y. Li, C. Gu, J. Li, Morphology inducing selective plasma etching for AlN nanocone arrays: Tip-size dependent photoluminescence and enhanced field emission properties. J. Mater. Chem. C 2, 2417–2422 (2014)

    Article  CAS  Google Scholar 

  41. Y.C. Lan, X.L. Chen, Y.G. Cao, Y.P. Xu, L.D. Xun, T. Xu, J.K. Liang, Low-temperature synthesis and photoluminescence of AlN. J. Cryst. Growth 207, 247–250 (1999)

    Article  CAS  Google Scholar 

  42. Trinkler, L., Berzi, B., Luminescence properties of AlN ceramics and its potential application for solid state dosimetry. Adv. Ceram. Charact. Raw Mater. Process. Prop. Degrad. Health. 59–82. https://doi.org/10.5772/18658

  43. Trinkler, L., Berzina, B., Palcevskis, E., AlN ceramics from nanosized plasma processed powder, its properties and application. Nitride Ceram. Combust. Synth. Prop. Appl., pp. 265–294 (2014). https://doi.org/10.1002/9783527684533.ch9

  44. R.A. Youngman, J.H. Harris, Luminescence studies of oxygen-related defects in aluminum nitride. J. Am. Ceram. Soc. 73, 3238–3246 (1990)

    Article  CAS  Google Scholar 

  45. A. Sato, K. Azumada, T. Atsumori, K. Hara, Characterization of AlN: Mn thin film phosphors prepared by metalorganic chemical vapor deposition. J. Cryst. Growth 298, 379–382 (2007)

    Article  CAS  Google Scholar 

  46. J.C. Nappé, M. Benabdesselam, P. Grosseau, B. Guilhot, Effect of swift heavy ion irradiations in polycrystalline aluminum nitride. Nucl. Instrum.ents Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269, 100–104 (2011)

    Article  CAS  Google Scholar 

  47. M. Benabdesselam, P. Iacconi, D. Lapraz, P. Grosseau, B. Guilhot, Thermoluminescence of AlN. Influence of synthesis processes. J. Phys. Chem. 99, 10319–10323 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Defence Research and Development Organization (DRDO) for funding (ERIPR/ER/1403181/M/01/1699, Dt.: 27.09.2017) and the Board of Research in Nuclear Science (BRNS) for research support (39/14/14/2016 – BRNS/34166, Dt.: 13.07.2016). This research was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021M3H4A6A01045764, 2018R1A5A1025224) and Creative Materials Discovery Program through the National Research Foundation of Korea (No. NRF-2016M3D1A1021141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gurusamy Shanmugavelayutham or Uk Sim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaresan, L., Shanmugavelayutham, G., Surendran, S. et al. Thermal plasma arc discharge method for high-yield production of hexagonal AlN nanoparticles: synthesis and characterization. J. Korean Ceram. Soc. 59, 338–349 (2022). https://doi.org/10.1007/s43207-021-00177-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00177-7

Keywords

Navigation