Skip to main content

Advertisement

Log in

Thermodynamic and phase analysis of SiC-nano/microB4C-C composites produced by pressureless sintering method

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this research, thermodynamic and phase analysis of SiC-Nano/microB4C composites with different weight percentages of secondary phase including 0, 0.5, 1, and 2 wt% -nano /microB4C made by pressureless sintering method have been investigated. To this end, 0 and 1 wt% phenolic resin were added to the samples separately as a carbon source (both as a binder and as a carbon additive), respectively. The resulting compounds were milled by a planetary ball mill for 3 h at a speed of 200 rpm. The initial pressing of the samples was performed at 50 MPa and the samples were subjected to pyrolysis at 600 °C. They were then sintered at 2150 °C for 2 h under an argon atmosphere. The results showed that the composite contained SiC-0.5 wt% -nanoB4C with the main peak intensity (2θ = 35.58) in phasic analysis using XRD pattern of more than 15,000 units and FWHM equal to 0.0036 which shows that the structure is smaller than the additive mode (FWHM = 0.2210) SiC-0.5 wt% -microB4C. Also, the results of phase analysis using the XRD model show that the use of NanoB4C increases the peak intensity in the phase analysis graph compared to the MicroB4C additive mode. In addition, increasing the wt% -nanoB4C increases the amount of graphitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Hotza, D.L.Marco, W. Michaela, I. Yuji, B. Samuel, C.D.C. João, Silicon carbide filters and porous membranes: A review of processing, properties, performance and application. J. Membr. Sci. (2020): 118193

  2. V. Priya, R.K. Kalia, A. Nakano, J.P. Rino, Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J Appl Phys 101(10), 103515 (2007)

    Article  Google Scholar 

  3. P. Chenglong, L. Zhang, W. Jiang, W. Setyawan, L. Chen, Z. Li, N. Liu, T. Wang. Grain size dependence of hardness in nanocrystalline silicon carbide. J. Eur. Ceram. Soc. (2020).

  4. K.V. Lobach, S. Yu Sayenko, V. A. Shkuropatenko, V. M. Voyevodin, H. V. Zykova, V. A. Zuyok, A. O. Bykov, L. L. Tovazhnyans’kyy, O. M. Chunyaev. Corrosion Resistance of Ceramics Based on SiC under Hydrothermal Conditions. Mater. Sci. (2020): 1–11.

  5. M.C. Vu, C. Won-Kook, G.L. Sung, J.P. Pyeong, H.K. Dae, I. Md Akhtarul, K. Sung-Ryong, High thermal conductivity enhancement of polymer composites with vertically aligned silicon carbide sheet scaffolds. ACS Appl. Mater. Interfaces 12(20), 23388–23398 (2020)

    Article  CAS  Google Scholar 

  6. G. Harris, Properties of silicon carbide, INSPEC, vol. 5 (The Institution of Electrical Engineers, London, 1995)

    Google Scholar 

  7. M.P. Orihuela, G.-M. Aurora, A.B. José, C. Ricardo, R.-R. Joaquín, Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers. J. Environ. Manag. 203, 907–919 (2017)

    Article  CAS  Google Scholar 

  8. Z. Tu, J. Mao, H. Jiang, X. Han, Z. He, Numerical method for the thermal analysis of a ceramic matrix composite turbine vane considering the spatial variation of the anisotropic thermal conductivity. Appl. Therm. Eng. 127, 436–452 (2017)

    Article  Google Scholar 

  9. T. Graziani, D.J. Baxter, C.A. Nannetti, Degradation of silicon carbide-based materials in a high temperature combustion environment. Key Eng. Mater. 113, 153–166 (1995)

    Article  Google Scholar 

  10. D. Hotza, M. Di Luccio, M. Wilhelm, Y. Iwamoto, S. Bernard, J.C. Diniz da Costa, Silicon carbide filters and porous membranes: A review of processing, properties, performance and application. J. Membr. Sci. 610 (2020).

  11. P. Sadagopan, K.N. Harish, K. Praveen, Study of silicon carbide-reinforced aluminum matrix composite brake rotor for motorcycle application. Int. J. Adv. Manuf. Technol. 94(1–4), 1461–1475 (2018)

    Google Scholar 

  12. O. Gryshkov, N.I. Klyui, V.P. Temchenko, V.S. Kyselov, A. Chatterjee, A.E. Belyaev, L. Lauterboeck, D. Iarmolenko, B. Glasmacher, Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants. Mater Sci Eng C Mater Biol Appl 68, 143–152 (2016)

    Article  CAS  Google Scholar 

  13. G. Ding, R. He, K. Zhang, N. Zhou, H. Xu, Stereolithography 3D printing of SiC ceramic with potential for lightweight optical mirror. Ceram. Int. 46(11), 18785–18790 (2020)

    Article  CAS  Google Scholar 

  14. W.J. Choyke, H. Matsunami, G. Pensl, Silicon carbide: recent major advances, Springer Science & Business Media2013.

  15. T. Kimoto, J.A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications, John Wiley & Sons2014.

  16. S. Somiya, Y. Inomata, Silicon carbide ceramics. 1. Fundamental and solid reaction, Springer1991.

  17. G.D. Quinn, G.D. Quinn, Fractography of ceramics and glasses, National Institute of Standards and Technology Washington, DC2007.

  18. I. Oviďko, A. Sheinerman, Toughening due to crack deflection in ceramic- and metal-graphene nanocomposites, Rev. Adv. Mater. Sci. 43 (2015).

  19. J. Rödel, Interaction between crack deflection and crack bridging. J. Eur. Ceram. Soc. 10(3), 143–150 (1992)

    Article  Google Scholar 

  20. J. Kabel, P. Hosemann, Y. Zayachuk, D.E. Armstrong, T. Koyanagi, Y. Katoh, C. Deck, Ceramic composites: a review of toughening mechanisms and demonstration of micropillar compression for interface property extraction. J. Mater. Res. 33(4), 424–439 (2018)

    Article  CAS  Google Scholar 

  21. P.M. Ajayan, S.S. Linda, V.B. Paul, Nanocomposite science and technology (John Wiley & Sons, Hoboken, 2006)

    Google Scholar 

  22. K. Niihara, A. Nakahira, T. Sekino, New nanocomposite structural ceramics. MRS Online Proceedings Library Archive 286 (1992).

  23. B.H. Kear, J. Colaizzi, W.E. Mayo, S.-C. Liao, On the processing of nanocrystalline and nanocomposite ceramics. Scr. Mater. 44(8–9), 2065–2068 (2001)

    Article  CAS  Google Scholar 

  24. L.L. Beecroft, C.K. Ober, Nanocomposite materials for optical applications. Chem. Mater. 9(6), 1302–1317 (1997)

    Article  CAS  Google Scholar 

  25. J. Li, X. Ren, Y. Zhang, H. Hou, Silicon carbide hot pressing sintered by magnesium additive: Microstructure and sintering mechanism. J. Market. Res. 9(1), 520–529 (2020)

    CAS  Google Scholar 

  26. A. Moradkhani, H. Baharvandi, Mechanical properties and fracture behavior of B4C-nano/micro SiC composites produced by pressureless sintering. Int. J. Refract Metal Hard Mater. 70, 107–115 (2018)

    Article  CAS  Google Scholar 

  27. A. Moradkhani, H. Baharvandi, Effects of additive amount, testing method, fabrication process and sintering temperature on the mechanical properties of Al2O3/3Y-TZP composites. Eng. Fract. Mech. 191, 446–460 (2018)

    Article  Google Scholar 

  28. A. Moradkhani, H. Baharvandi, M.M.M. Samani, Mechanical properties and microstructure of B4C–NanoTiB2–Fe/Ni composites under different sintering temperatures. Mater. Sci. Eng. A 665, 141–153 (2016)

    Article  CAS  Google Scholar 

  29. G.H. Wroblewska, E. Nold, F. Thümmler, The role of boron and carbon additions on the microstructural development of pressureless sintered silicon carbide. Ceram. Int. 16(4), 201–209 (1990)

    Article  CAS  Google Scholar 

  30. J.W. Fergus, W.L. Worrell, Effect of Carbon and Boron on the High-Temperature Oxidation of Silicon Carbide. J. Am. Ceram. Soc. 78(7), 1961–1964 (1995)

    Article  CAS  Google Scholar 

  31. S. Prochazka, R.M. Scanlan, Effect of boron and carbon on sintering of SiC. J. Am. Ceram. Soc. 58(1–2), 72–72 (1975)

    Article  CAS  Google Scholar 

  32. W.J. Clegg, Role of carbon in the sintering of boron-doped silicon carbide. J. Am. Ceram. Soc. 83(5), 1039–1043 (2000)

    Article  CAS  Google Scholar 

  33. K. Negita, Effective sintering aids for silicon carbide ceramics: reactivities of silicon carbide with various additives. J. Am. Ceram. Soc. 69(12), 308 (1986)

    Article  Google Scholar 

  34. W. Van Rijswijk, J.S. Daniel, Effects of carbon as a sintering aid in silicon carbide. J. Am. Ceram. Soc. 73(1), 148–149 (1990)

    Article  Google Scholar 

  35. G. Magnani, G. Beltrami, G.L. Minoccari, L. Pilotti, Pressureless sintering and properties of αSiC–B4C composite. J. Eur. Ceram. Soc. 21(5), 633–638 (2001)

    Article  CAS  Google Scholar 

  36. L. Stobierski, A. Gubernat, Sintering of silicon carbide II. Effect Boron Ceram Int 29(4), 355–361 (2003)

    Article  CAS  Google Scholar 

  37. M. Datta, A. Bandyopadhyay, B. Chaudhuri, Sintering of nano crystalline α silicon carbide by doping with boron carbide. Bull. Mater. Sci. 25(3), 181–189 (2002)

    Article  CAS  Google Scholar 

  38. K. Gyoung-Deuk, Y.-W. Kim, I.-H. Song, K.J. Kim, Effects of carbon and silicon on electrical, thermal, and mechanical properties of porous silicon carbide ceramics. Ceram Int (2020).

  39. V. Wylen, G. John, Richard Edwin Sonntag, and Claus Borgnakke. Fundamentals of classical thermodynamics (Wiley, New York, 1976)

    Google Scholar 

  40. B. Adrian, Advanced engineering thermodynamics (John Wiley & Sons, Hoboken, 2016)

    Google Scholar 

  41. W., Yoshio, E. Matsubara, K. Shinoda. X-ray diffraction crystallography: introduction, examples and solved problems. Springer Science & Business Media, 2011.

  42. D.L. Dorset, X-ray diffraction: a practical approach. Microsc. Microanal. 4(5), 513–515 (1998)

    Article  CAS  Google Scholar 

  43. B.E. Warren, X-ray Diffraction. Courier Corporation, 1990.

  44. ASTM C373–88, Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired White Ware Products, Volume 15–02, Glass and Ceramic, 2006

  45. H.E.J.I.N.G. Wang, Step size, scanning speed and shape of X-ray diffraction peak. J. Appl. Crystallogr. 27(5), 716–722 (1994)

    Article  CAS  Google Scholar 

  46. X. Cao, L. Shang, Y. Liang, Z. Lu, G. Zhang, Q. Xue, Tribological performances of the boron carbide coatings sliding against silicon carbide and silicon nitride balls under various relative humidity conditions. Ceram. Int. 46(3), 3074–3081 (2020)

    Article  CAS  Google Scholar 

  47. P. Jonathan, K. Patel, E.B. Nauman, Structure and properties of Resin Phenolic/nanoclay composites synthesized by in situ polymerization. J. Appl. Polym. Sci. 95(5), 1169–1174 (2005)

    Article  Google Scholar 

  48. C.M. Wei, H.P. Qiu, J. Jiao, Y. Wang, W.J. Xie, High temperature oxidation behavior of silicon carbide ceramic. In Key Engineering Materials, vol. 680, pp. 89–92. Trans Tech Publications Ltd, 2016.

  49. J. Chen, Q. Kong, Z. Liu, Z. Bi, H. Jia, Ge. Song, L. Xie, S. Zhang, C.-M. Chen, High yield silicon carbide whiskers from rice husk ash and graphene: growth method and thermodynamics. ACS Sustain. Chem. Eng. 7(23), 19027–19033 (2019)

    Article  CAS  Google Scholar 

  50. A. Noviyanto, D.-H. Yoon, Metal oxide additives for the sintering of silicon carbide: reactivity and densification. Curr. Appl. Phys. 13(1), 287–292 (2013)

    Article  Google Scholar 

  51. Y. Shicong, W. Ma, K. Wei, K. Xie, Z. Wang, Thermodynamic analysis and experimental verification for silicon recovery from the diamond wire saw silicon powder by vacuum carbothermal reduction. Sep. Purif. Technol. 228, 115754 (2019)

    Article  Google Scholar 

  52. L.-Q. Duan, Q.-S. Ma, Lu. Lin-jian Ma, B.W. Dong, X.-Q. Dai, Bo. Zhang, Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons. New Carbon Mater. 34(4), 367–372 (2019)

    Article  Google Scholar 

  53. E.J. Opila, Q.N. Nguyen, Oxidation of chemically-vapor-deposited silicon carbide in carbon dioxide. J. Am. Ceram. Soc. 81(7), 1949–1952 (1998)

    Article  CAS  Google Scholar 

  54. A. Shahtalebi, M. Mar, K. Guérin, S.K. Bhatia, Effect of fluorine doping on structure and CO2 adsorption in silicon carbide-derived carbon. Carbon 96, 565–577 (2016)

    Article  CAS  Google Scholar 

  55. T. Narushima, T. Goto, M. Maruyama, H. Arashi, Y. Iguchi, Oxidation of boron carbide-silicon carbide composite at 1073 to 1773 K. Mater. Trans. 44(3), 401–406 (2003)

    Article  CAS  Google Scholar 

  56. R. Hamed, S.A. Tayebifard, A. Kazemzadeh, L. Nikzad, Effect of Mg/B2O3 molar ratio and furnace temperature on the phase evaluation and morphology of SiC–B4C nanocomposite prepared by MASHS method. Mater Chem Phys 161, 162–169 (2015)

    Article  Google Scholar 

  57. E. Ionescu, C. Terzioglu, C. Linck, J. Kaspar, A. Navrotsky, R. Riedel, Thermodynamic control of phase composition and crystallization of metal-modified silicon oxycarbides. J. Am. Ceram. Soc. 96(6), 1899–1903 (2013)

    Article  CAS  Google Scholar 

  58. J. Seong-Min, S. Won-Seon, J. In-Ho, L. Kyung-Jin, H.J. Hwang, Thermodynamic analysis of the synthesis of silicon carbide nanofibers from exfoliated graphite and amorphous silica. Cryst. Eng. Commun. 16(12), 2348–2351 (2014)

    Article  Google Scholar 

  59. L. Stobierski, A. Gubernat, Sintering of silicon carbideI. Effect Carbon Ceram. Int. 29(3), 287–292 (2003)

    Article  CAS  Google Scholar 

  60. J.A. Costello, R.E. Tressler, Oxidation kinetics of silicon carbide crystals and ceramics: I, in dry oxygen. J. Am. Ceram. Soc. 69(9), 674–681 (1986)

    Article  CAS  Google Scholar 

  61. G. Ervin Jr., Oxidation behavior of silicon carbide. J. Am. Ceram. Soc. 41(9), 347–352 (1958)

    Article  CAS  Google Scholar 

  62. P.J. Jorgensen, M.E. Wadsworth, I.B. Cutler, Oxidation of silicon carbide. J. Am. Ceram. Soc. 42(12), 613–616 (1959)

    Article  CAS  Google Scholar 

  63. Y.Q. Li, T. Qiu, Oxidation behaviour of boron carbide powder. Mater. Sci. Eng., A 444(1–2), 184–191 (2007)

    Article  Google Scholar 

  64. M. Steinbrück, Oxidation of boron carbide at high temperatures. J. Nucl. Mater. 336(2–3), 185–193 (2005)

    Article  Google Scholar 

  65. A.A. Taha, S.A. Abdel, Ghani., Adsorption kinetics, equilibrium, and thermodynamics of copper from aqueous solutions using silicon carbide derived from rice waste. J. Dispers. Sci. Technol. 37(2), 173–182 (2016)

    Article  CAS  Google Scholar 

  66. M.C. Morris, Standard X-Ray Diffraction Powder Patterns: Section 16--Data For 86 Substances. Vol. 25. Department of Commerce, National Bureau of Standards, 1979

  67. K. Miyazaki, T. Hagio, K. Kobayashi, Graphite and boron carbide composites made by hot-pressing. J. Mater. Sci. 16(3), 752–762 (1981)

    Article  CAS  Google Scholar 

  68. B. Salmany Kozekanan, A. Moradkhani, H. Baharvandi, N. Ehsani, Mechanical properties of SiC-C-B4C composites with different carbon additives produced by pressureless sintering. Int. J. Appl. Ceram. Technol. 18(3), 957–971 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Moradkhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozekanan, B.S., Moradkhani, A., Baharvandi, H. et al. Thermodynamic and phase analysis of SiC-nano/microB4C-C composites produced by pressureless sintering method. J. Korean Ceram. Soc. 59, 180–192 (2022). https://doi.org/10.1007/s43207-021-00173-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00173-x

Keywords

Navigation