Skip to main content
Log in

Optimized precipitation process for efficient and size-controlled synthesis of hydroxyapatite–chitosan nanocomposite

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

It is known that the physicochemical characteristics of nanocomposites strongly affected by synthesis route and conditions. In this study, hydroxyapatite–chitosan nanocomposite as a substance with extensive medical application has been prepared by precipitation method under controlled conditions. To evaluation of the main synthesis parameters, including mixing ratio of precursors, pH and drying condition and investigation of their effect on the final products characteristics, a statistical design of experiments approach via Minitab 18 has been applied. For this purpose 12 sets of experimental run have been designed and performed based on various combinations of aforementioned parameters and the characteristics of the prepared samples have been elucidated by means of Fourier transformed infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and the particle size analysis. The results represent the potential impact of synthesis parameters, their interaction with each other and estimation of optimum synthesis conditions. It is revealed that mean particle size of HA-CS nanocomposite reduced by increasing the content of hydroxyapatite and increment of reaction pH to values higher than 10. Also it is founded that freeze drying process, can be used as a superior drying method for the preparation of HA-CS nanocomposite with uniform particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.K. Carrow, A.K. Gaharwar, Chem. Phys. 216, 248 (2015)

    CAS  Google Scholar 

  2. E. Ruiz-Hitzky, M. Darder, P. Aranda, J. Mater. Chem. 15, 3650 (2005)

    CAS  Google Scholar 

  3. S. Dorozhkin, J. Funct. Biomater. 6, 708 (2015)

    CAS  Google Scholar 

  4. S.K. Nandi, B. Kundu, S.K. Ghosh, D.K. De, D. Basu, J. Vet. Sci. 9, 183 (2008)

    Google Scholar 

  5. J.K. Suh, H.W. Matthew, Biomaterials 21, 2589 (2000)

    CAS  Google Scholar 

  6. V. Dodane, V.D. Vilivalam, Pharm. Sci. Technol. Today 1, 246 (1998)

    CAS  Google Scholar 

  7. L. Pighinelli, M. Kucharska, Carbohyd. Polym. 93, 256 (2013)

    CAS  Google Scholar 

  8. I. Roy, S. Mitra, A. Maitra, S. Mozumdar, Int. J. Pharm. 250, 25 (2003)

    CAS  Google Scholar 

  9. M. Stigter, K. de Groot, P. Layrolle, Biomaterials 23, 4143 (2002)

    CAS  Google Scholar 

  10. F. Zhang, Z.H. Zhou, S.P. Yang, L.H. Mao, H.M. Chen, X.B. Yu, Mater. Lett. 59, 1422 (2005)

    CAS  Google Scholar 

  11. M. Yoshimura, H. Suda, K. Okamoto, K. Ioku, J. Mater. Sci. 29, 3399 (1994)

    CAS  Google Scholar 

  12. M. Jevtic, M. Mitric, S. Skapin, B. Jancar, N. Ignjatovic, D. Uskokovic, Cryst. Growth Des. 8, 2217 (2008)

    CAS  Google Scholar 

  13. S. Bose, S.K. Saha, J. Am. Ceram. Soc. 86, 1055 (2003)

    CAS  Google Scholar 

  14. A. Deptula, W. Lada, T. Olczak, A. Borello, C. Alvani, J Noncryst. Solids 537, 147 (1992)

    Google Scholar 

  15. S. Bose, S.K. Saha, Chem. Mater. 15, 4464 (2003)

    CAS  Google Scholar 

  16. G.K. Lim, J. Wang, S.C. Ng, L.M. Gan, Mater. Lett. 28, 431 (1996)

    CAS  Google Scholar 

  17. I. Mobasherpour, M.S. Heshajin, A. Kazemzadeh, M. Zakeri, J. Alloy. Compd. 430, 330 (2007)

    CAS  Google Scholar 

  18. M. Modesti, A. Lorenzetti, D. Bon, S. Besco, Polymer 46, 10237 (2005)

    CAS  Google Scholar 

  19. X. Shen, L. Chen, X. Cai, T. Tong, H. Tong, J. Hu, J. Mater, Sci. Mater. Med. 22, 299 (2011)

    CAS  Google Scholar 

  20. G. Bharath, V. Veeramani, S. Chen, R. Madhu, M.M. Raja, A. Balamurugan, D. Mangalaraj, C. Viswanathan, N. Ponpandian, RSC Adv. 5, 13392 (2015)

    CAS  Google Scholar 

  21. T. Başargan, G. Nasün-Saygılı, Polym. Plast. Technol. Eng. 54, 1172 (2015)

    Google Scholar 

  22. S. Baumgartner, G. Lahajnar, A. Sepe, J. Kristl, A.A.P.S. Pharm, Sci. Technol. 3, 1 (2002)

    Google Scholar 

  23. M. Kutty, R. Singh, Ceram. Int. 26, 221 (2000)

    Google Scholar 

  24. L. Kaewsichan, D. Riyapan, P. Prommajan, J. Kaewsrichan, Sci. Asia 37, 240 (2011)

    CAS  Google Scholar 

  25. S.A. Weissman, Org. Process Res. Dev. 19, 1605 (2015)

    CAS  Google Scholar 

  26. A. Chandrasekar, S. Sagadevan, A. Dakshnamoorthy, Int. J. Phys. Sci. 8, 1639 (2013)

    Google Scholar 

  27. S.N. Danilchenko, O.V. Kalinkevich, M.V. Pogorelov, A.N. Kalinkevich, A.M. Sklyar, T.G. Kalinichenko, V.Y. Ilyashenko, V.V. Starikov, V.I. Bumeyster, V.Z. Sikora, L.F. Sukhodub, A.G. Mamalis, S.N. Lavrynenko, J.J. Ramsden, J. Biol. Phys. Chem. 9, 119 (2009)

    CAS  Google Scholar 

  28. M.R. Finisie, A. Josué, V.T. Fávere, M.C. Laranjeira, An. Acad. Bras. Cienc. 73, 525 (2001)

    CAS  Google Scholar 

  29. M.G. Sankalia, R.C. Mashru, J.M. Sankalia, V.B. Sutariya, Eur. J. Pharm. Biopharm. 65, 215 (2007)

    CAS  Google Scholar 

  30. G. Zuo, Y. Wan, L. Wang, C. Liu, F. He, H. Luo, Mater. Lett. 64, 2126 (2010)

    CAS  Google Scholar 

  31. N. Pramanik, D. Mishra, I. Banerjee, T.K. Maiti, P. Bhargava, P. Pramanik, Int. J. Biomater. 2009, 1 (2009)

    Google Scholar 

  32. S.S.A. Abidi, Q. Murtaza, J. Mater. Sci. Technol. 30, 307 (2013)

    Google Scholar 

  33. R. Gupta, D. Huo, M. White, V. Jha, G.B.G. Stenning, K. Pancholi, Comp. Commun. 16, 67 (2019)

    Google Scholar 

  34. F.M. Zonoz, S.J. Ahmadi, S.A. Nosrati, M.G. Maragheh, J. Hazard. Mat. 169, 808 (2009)

    CAS  Google Scholar 

  35. M.R. Davarpanah, S.A. Nosrati, M. Fazlali, M.K. Boudani, H. Khoshhosn, M.G. Maragheh, Appl. Radiat. Isot. 67, 1796 (2009)

    CAS  Google Scholar 

  36. A. Sionkowska, J. Kozłowska, Int. J. Biol. Macromol. 47, 483 (2010)

    CAS  Google Scholar 

  37. T. Wang, A. Dorner-Reisel, E. Muller, J. Eur. Ceram. Soc. 24, 693 (2004)

    CAS  Google Scholar 

  38. L.Y. Lim, E. Khor, C.E. Ling, J. Biomed. Mater. Res. 48, 111 (1999)

    CAS  Google Scholar 

  39. M. Bodnar, J.F. Hartmann, J. Borbely, Biomacromolecules 6, 2521 (2005)

    CAS  Google Scholar 

  40. D.R. Bhumkar, V.B. Pokharkar, A.A.P.S. Pharm, Sci. Technol. 7, E138 (2006)

    Google Scholar 

  41. M. Giulietti, M.M. Seckler, S. Derenzo, M.I. Ré, E. Cekinski, Braz. J. Chem. Eng. 15, 423 (2001)

    Google Scholar 

  42. Y. Peng, D.J. Gardner, Y. Han, Cellulose 19, 91 (2012)

    CAS  Google Scholar 

  43. M. Esmaeili, S.S. Madaeni, J. Barzin, Sep. Purif. Technol. 103, 289 (2013)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robabeh Alizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attar Nosrati, S., Alizadeh, R., Ahmadi, S.J. et al. Optimized precipitation process for efficient and size-controlled synthesis of hydroxyapatite–chitosan nanocomposite. J. Korean Ceram. Soc. 57, 632–644 (2020). https://doi.org/10.1007/s43207-020-00064-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00064-7

Keywords

Navigation