Skip to main content
Log in

Crack-free TiO2 films prepared by adjusting processing parameters via liquid phase deposition technique

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

TiO2 thin films with controllable morphology and grain size were prepared via a liquid phase deposition (LPD) technique. The effects of the processing parameters including the (NH4)2TiF6 concentration, solution pH, and (NH4)2TiF6:H3BO3 molar ratio on the grain size and morphology of the films were investigated. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, and ultraviolet–visible spectroscopy. The results showed that the deposition parameters significantly affected the growth and nucleation velocities of the crystalline grains, which resulted in the formation of TiO2 films with different morphologies and grain sizes. The capillary stress among the grains of the film, which resulted in the cracking of the film, depended on the size of the grains. Thus, the cracking of the LPD-derived TiO2 films could be mitigated by adjusting the deposition parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.D. Yang, Y.Q. Wang, Z.S. Wang, X.Z. Lv, H.X. Jia, J.H. Kong, M.H. Yu, Preparation of CdS/TiO2 nanotube arrays and the enhanced photocatalytic property. Ceram. Int. 42, 7192–7202 (2016)

    Article  CAS  Google Scholar 

  2. W. Liang, J. Li, Y. Jin, Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Build. Environ. 51, 345–350 (2012)

    Article  Google Scholar 

  3. A.M. Bakhshayesh, M.R. Mohammadi, D.J. Fray, Controlling electron transport rate and recombination process of TiO2 dye-sensitized solar cells by design of double-layer films with different arrangement modes. Electrochim. Acta 78, 384–391 (2012)

    Article  CAS  Google Scholar 

  4. J. Wan, Y. Lei, Y. Zhang, Y. Leng, J. Liu, Study on TiO2 photoelectrode to improve the overall performance of dye-sensitized solar cells. Electrochim. Acta 59, 75–80 (2012)

    Article  CAS  Google Scholar 

  5. A.S. Shikoh, Z. Ahmad, F. Touati, R.A. Shakoor, S.A. Al-Muhtaseb, Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques. Ceram. Int. 43, 10540–10545 (2017)

    Article  CAS  Google Scholar 

  6. C. Xu, Y.J. Zhong, Y.N. Zheng, W.Y. Huang, C. Jin, B.B. Xu, R.Q. Yao, Z.D. Feng, Micromixing-assisted preparation of TiO2 films from ammonium hexafluorotitanate and urea by liquid phase deposition based on simulation of mixing process in T-shaped micromixer. Ceram. Int. 45, 11325–11334 (2019)

    Article  CAS  Google Scholar 

  7. G.Y. Roh, H.S. Sung, Y.C. Lee, S.E. Lee, Study on optical characteristics of nano hollow silica with TiO2 shell formation. J. Korean Ceram. Soc. 56, 98–103 (2019)

    Article  CAS  Google Scholar 

  8. H. Wu, Z. Zhang, Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays. J. Solid State Chem. 184, 3202–3207 (2011)

    Article  CAS  Google Scholar 

  9. Z. Zhang, M.F. Hossain, T. Takahashi, Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int. J. Hydrogen. Energ. 35, 8528–8535 (2010)

    Article  CAS  Google Scholar 

  10. M. Frites, S.U.M. Khan, Visible light active hydrogen modified (HM)-n-TiO2 thin films for photoelectrochemical splitting of water. Electrochem. Commun. 11, 2257–2260 (2009)

    Article  CAS  Google Scholar 

  11. A. Boonserm, C. Kruehong, V. Seithtanabutara, A. Artnaseaw, P. Kwakhong, Photoelectrochemical response and corrosion behavior of CdS/TiO2 nanocomposite films in an aerated 0.5 M NaCl solution. Appl. Surf. Sci. 419, 933–941 (2017)

    Article  CAS  Google Scholar 

  12. D. Wu, M. Long, Realizing visible-light-induced self-cleaning property of cotton through coating N-TiO2 film and loading AgI particles. ACS. Appl. Mater. Inter. 3, 4770–4774 (2011)

    Article  CAS  Google Scholar 

  13. C.X. Lei, Z.D. Feng, H. Zhou, Visible-light-driven photogenerated cathodic protection of stainless steel by liquid-phase-deposited TiO2 films. Electrochim. Acta 68, 134–140 (2012)

    Article  CAS  Google Scholar 

  14. B. Dudem, L.K. Bharat, J.W. Leem, D.H. Kim, J.S. Yu, Hierarchical Ag/TiO2/Si forest-like nano/micro-architectures as antireflective, plasmonic photocatalytic, and self-cleaning coatings. ACS. Sustain. Chem. Eng. 6, 1580–1591 (2017)

    Article  Google Scholar 

  15. Y. Yu, J. Wang, J.F. Parr, Preparation and Properties of TiO2/fumed silica composite photocatalytic materials. Procedia. Eng. 27, 448–456 (2012)

    Article  CAS  Google Scholar 

  16. Y. Ding, C. Yang, L. Zhu, J. Zhang, Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole. J. Hazard. Mater. 175, 96–103 (2010)

    Article  CAS  Google Scholar 

  17. M. Mallak, M. Bockmeyer, P. Löbmann, Liquid phase deposition of TiO2 on glass: systematic comparison to films prepared by sol–gel processing. Thin Solid Films 515, 8072–8077 (2007)

    Article  CAS  Google Scholar 

  18. B. Ma, G.K. Goh, J. Ma, T.J. White, Growth kinetics and cracking of liquid-phase-deposited anatase films. J. Electrochem. Soc. 154, D557–D561 (2007)

    Article  CAS  Google Scholar 

  19. J. Gong, C. Yang, W. Pu, J. Zhang, Liquid phase deposition of tungsten doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate. Chem. Eng. J. 167, 190–197 (2011)

    Article  CAS  Google Scholar 

  20. M. Zhang, C.Z. Yang, W.H. Pu, Y.B. Tan, K. Yang, J.D. Zhang, Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation. Electrochim. Acta. 148, 180–186 (2014)

    Article  CAS  Google Scholar 

  21. X. Cheng, K. Gotoh, Y. Nakagawa, N. Usami, Effect of substrate type on the electrical and structural properties of TiO2 thin films deposited by reactive DC sputtering. J. Crys. Growth. 491, 120–125 (2018)

    Article  CAS  Google Scholar 

  22. C.X. Lei, X. Huang, X. Liu, A.S. Wang, G.S. Zhang, D.L. Peng, Photoelectrochemical performances of the SnO2−TiO2 bilayer composite films prepared by a facile liquid phase deposition method. J. Alloy. Compd. 692, 227–235 (2017)

    Article  CAS  Google Scholar 

  23. J.J. Huang, S.L. Ou, C.F. Hsu, X.Q. Shen, The effect of boric acid concentration on the TiO2 compact layer by liquid phase deposition for dye-sensitized solar cell. Appl. Surf. Sci. 477, 7–14 (2019)

    Article  CAS  Google Scholar 

  24. M.C. Marchi, S.A. Bilmes, C.T.M. Ribeiro, E.A. Ochoa, M. Kleinke, F. Alvarez, A comprehensive study of the influence of the stoichiometry on the physical properties of TiOx films prepared by ion beam deposition. J. Appl. Phys. 108, 064912 (2010)

    Article  Google Scholar 

  25. M. Mahé, J.M. Heintz, J. Rödel, P. Reynders, Cracking of titania nanocrystalline coatings. J. Eur. Ceram. Soc. 28, 2003–2010 (2008)

    Article  Google Scholar 

  26. H. Pizem, C.N. Sukenik, U. Sampathkumaran, A.K. McIlwain, M.R. De Guire, Effects of substrate surface functionality on solution-deposited titania films. Chem. Mater. 14, 2476–2485 (2002)

    Article  CAS  Google Scholar 

  27. F. Fresno, R. Portela, S. Suárez, J.M. Coronado, Photocatalytic materials: recent achievements and near future trends. J. Mater. Chem. A. 2, 2863–2884 (2014)

    Article  CAS  Google Scholar 

  28. Y. Gao, Y. Masuda, K. Koumoto, Microstructure-controlled deposition of SrTiO3 thin film on self-assembled monolayers in an aqueous solution of (NH4)2TiF6 − Sr(NO3)2 − H3BO3. Chem. Mater. 15, 2399–2410 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Outstanding Young Talents Support Program in Colleges and Universities (gxyqZD2016150), National Natural Science Foundation of China (51778003 and 51578004), and Major Projects of Natural Science Research in Anhui Colleges and Universities (KJ2018ZD050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Yan Xu or Won-Chun Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xu, HY., Wang, AG. et al. Crack-free TiO2 films prepared by adjusting processing parameters via liquid phase deposition technique. J. Korean Ceram. Soc. 57, 206–212 (2020). https://doi.org/10.1007/s43207-020-00019-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00019-y

Keywords

Navigation