Skip to main content
Log in

Concentration of polychlorinated biphenyls and risk assessment in finless porpoises from the East China Sea

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

Polychlorinated biphenyls (PCBs) are bioaccumulative persistent organic pollutants with a great impact on cetaceans. To examine the content of PCBs and their risks to finless porpoises, this study determined the concentrations of seven typical PCB congeners in 56 tissue samples of East Asian finless porpoises (EAFPs) sampled in 2009–2012 from Ningbo (29.8835° N, 122.0644° E), Pingtan (25.5133° N, 119.8172° E) and Lvsi (32.1035° N, 121.6078° E). PCB138, PCB153 and PCB101 were the predominant congeners, accounting for 31.15%, 18.59% and 15.75%, respectively, of all PCBs detected. The content of PCBs increased with age in males but decreased from juveniles to adults in females due to transfer to calves by reproduction and lactation. EAFPs in Ningbo and Pingtan accumulated more PCBs than those in Lvsi Port. The trophic positions of EAFPs from Lvsi, Pingtan and Ningbo were 9.41, 8.95 and 9.43, respectively. PCB concentrations did not accumulate significantly with increasing trophic levels. The risk quotient index indicated that the risk of trichlorobiphenyl (3-PCB), tetrachlorobiphenyl (4-PCB), pentachlorobiphenyls (5-PCB), and hexachlorobiphenyls (6-PCB) to EAFPs in the East China Sea was generally low and within safe limits thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All datasets on which the conclusions of the manuscript rely are available.

References

  1. ASTDR Toxicological profile for ASTDR (2000) Toxicological profile for polychlorinated biphenyls (PCBs). Agency for toxic substances and disease registry, (November), 1–948. Agency Toxic Subst Dis Regist. https://doi.org/10.1201/9781420061888_ch129. Retrieved from http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=142&tid=26Polychlorinat

  2. European Commission – DG Environment (2014) Ex-post evaluation of certain waste Stream Directives. Final reports

  3. Chou CC, Chen YN, Li CS (2004) Congener-specific polychlorinated biphenyls in cetaceans from Taiwan waters. Arch Environ Contam Toxicol 47:551–560. https://doi.org/10.1007/s00244-004-3214-y

    Article  PubMed  Google Scholar 

  4. Zhang L, Shi S, Dong L, Zhang T, Zhou L, Huang Y (2011) Concentrations and possible sources of polychlorinated biphenyls in the surface water of the Yangtze River Delta, China. Chemosphere 85:399–405. https://doi.org/10.1016/J.CHEMOSPHERE.2011.07.064

    Article  CAS  PubMed  Google Scholar 

  5. Hickie BE, Ross PS, Macdonald RW, Ford JKB (2007) Killer whales (Orcinus orca) face protracted health risks associated with lifetime exposure to PCBs. Environ Sci Technol 41:6613–6619. https://doi.org/10.1021/es0702519

    Article  PubMed  Google Scholar 

  6. Stuart-Smith SJ, Jepson PD (2017) Persistent threats need persistent counteraction: Responding to PCB pollution in marine mammals. Mar Policy 84:69–75. https://doi.org/10.1016/j.marpol.2017.06.033

    Article  Google Scholar 

  7. Tanabe S, Iwata H, Tatsukawa R (1994) Global contamination by persistent organochlorines and their ecotoxicological impact on marine mammals. Sci Total Environ 154:163–177. https://doi.org/10.1016/0048-9697(94)90086-8

    Article  PubMed  Google Scholar 

  8. Yoder AJ (2003) Lessons from stockholm: evaluating the global convention on persistent organic pollutants. Indiana J Glob Leg Stud 10:113–156. https://doi.org/10.1353/gls.2003.0025

    Article  Google Scholar 

  9. China SEPA (2003) Building the capacity of the People’s Republic of China to implement the Stockholm convention on POPs and develop a national implementation plan. GEF Project Brief (GF/CPR/02/010)

  10. Xing Y, Lu Y, Dawson RW, Shi Y, Zhang H, Wang T, Liu W, Ren H (2005) A spatial temporal assessment of pollution from PCBs in China. Chemosphere 60:731–739.41. https://doi.org/10.1016/j.chemosphere.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  11. Peng L, Dai X, Yu A (2015) Assessment of the spatial and temporal distribution of legacy persistent organic pollutants and recommendations for sample collection from the surficial sediments of estuaries and seas in China. Chemosphere 119:S138–S144. https://doi.org/10.1016/j.chemosphere.2014.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  12. Amano M (2018) Finless porpoises. In: Encyclopedia of marine mammals

  13. Jefferson TA, Wang JY (2011) Revision of the taxonomy of finless porpoises (genus Neophocaena): the existence of two species. J Mar Anim Their Ecol 4:3–16

    Google Scholar 

  14. Wang JY, Reeves R (2017) Neophocaena asiaeorientalis. The IUCN red list of threatened species 2017:e.T41754A50381766

  15. Zhou X, Guang X, Sun D, Xu S, Li M, Seim I, Jie W, Yang L, Zhu Q, Xu J, Gao Q, Kaya A, Dou Q, Chen B, Ren W, Li S, Zhou K, Gladyshev VN, Nielsen R, Fang X, Yang G (2018) Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat Commun 9:1276. https://doi.org/10.1038/s41467-018-03722-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gao A (1991) Morphological differences and genetic variations among the populations of Neophocaena phocaenoides. Dissertation, Nanjing Normal University

  17. Gao A, Zhou KY (1995) Geographical variation of external measurements and three subspecies of Neophocaena phocaenoides in Chinese waters. Acta Theriologica Sinica 15:81–92

    Google Scholar 

  18. Hung CLH, Xu Y, Lam JCW, Jefferson TA, Hung SK, Yeung LWY, Lam MHW, O’Toole DK, Lam PKS (2006) An assessment of the risks associated with polychlorinated biphenyls found in the stomach contents of stranded Indo-Pacific Humpback Dolphins (Sousa chinensis) and Finless Porpoises (Neophocaena phocaenoides) from Hong Kong waters. Chemosphere 63:845–852. https://doi.org/10.1016/J.CHEMOSPHERE.2005.07.059

    Article  CAS  PubMed  Google Scholar 

  19. Jeong Y, Kim SJ, Shin KH, Hwang SY, An YR, Moon HB (2016) Accumulation and temporal changes of PCDD/Fs and dioxin-like PCBs in finless porpoises (Neophocaena asiaeorientalis) from Korean coastal waters: Tracking the effectiveness of regulation. Mar Pollut Bull 105:30–36. https://doi.org/10.1016/J.MARPOLBUL.2016.03.007

    Article  CAS  PubMed  Google Scholar 

  20. Jeong Y, Lee Y, Park KJ, An YR, Moon HB (2020) Accumulation and time trends (2003–2015) of persistent organic pollutants (POPs) in blubber of finless porpoises (Neophocaena asiaeorientalis) from Korean coastal waters. J Hazard Mater 385:121598. https://doi.org/10.1016/J.JHAZMAT.2019.121598

    Article  PubMed  Google Scholar 

  21. Moon HB, Choi HG, An YR, Park KJ, Choi SG, Moon DY, Kannan K (2010) Contamination status and accumulation features of PCDDs, PCDFs and dioxin-like PCBs in finless porpoises (Neophocaena phocaenoides) from Korean coastal waters. J Hazard Mater 183:799–805. https://doi.org/10.1016/J.JHAZMAT.2010.07.097

    Article  CAS  PubMed  Google Scholar 

  22. Ochiai M, Nomiyama K, Isobe T, Matsuishi T, Yamada T, Tanabe S (2011) Polychlorinated biphenyls (PCBs) and hydroxylated PCBs (OH-PCBs) in three porpoise species: accumulation features and metabolic capacity. Organohalogen Compd 72:1027–1030

    Google Scholar 

  23. Ochiai M, Nomiyama K, Isobe T, Mizukawa H, Yamada TK, Tajima Y, Matsuishi T, Amano M, Tanabe S (2013) Accumulation of hydroxylated polychlorinated biphenyls (OH-PCBs) and implications for PCBs metabolic capacities in three porpoise species. Chemo 92:803–810. https://doi.org/10.1016/j.chemosphere.2013.04.024

    Article  CAS  Google Scholar 

  24. Yang F, Zhang Q, Xu Y, Jiang G, Wang Y, Wang D (2008) Preliminary hazard assessment of polychlorinated biphenyls, polybrominated diphenyl ethers, and polychlorinated dibenzo-p-dioxins and dibenzofurans to Yangtze finless porpoise in Dongting Lake, China. Environ Toxicol Chem 27:991–996. https://doi.org/10.1897/07-381.1

    Article  CAS  PubMed  Google Scholar 

  25. Zhang K, Qian Z, Ruan Y, Hao Y, Dong W, Li K, Mei Z, Wang K, Wu C, Wu J, Zheng J, Lam PKS, Wang D (2020) First evaluation of legacy persistent organic pollutant contamination status of stranded Yangtze finless porpoises along the Yangtze River Basin, China. Sci Total Environ 710:136446. https://doi.org/10.1016/J.SCITOTENV.2019.136446

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li MQ, Lin T, Li YY, Guo ZG (2019) Concentration and composition of polychlorinated biphenyls in the water of the East China Sea. Mar Environ Sci 38:589–593. https://doi.org/10.12111/j.mes20190416

    Article  CAS  Google Scholar 

  27. Stockin KA, Law RJ, Roe WD, Meynier L, Martinez E, Duignan PJ, Bridgen P, Jones B (2010) PCBs and organochlorine pesticides in Hector’s (Cephalorhynchus hectori hectori) and Maui’s (Cephalorhynchus hectori maui) dolphins. Mar Pollut Bull 60:834–842. https://doi.org/10.1016/j.marpolbul.2010.01.009

    Article  PubMed  Google Scholar 

  28. Skoog DA, Leary JJ (1992) Principles of instrumental analysis, 4th edn. Saunders College Publishing, Fort Worth

    Google Scholar 

  29. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  PubMed  Google Scholar 

  30. Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560. https://doi.org/10.1002/rcm.5129

    Article  CAS  PubMed  Google Scholar 

  31. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  32. Ji WW (2011) Ecological studies on the food web structures and trophic relationships of Northern and Central East China Sea using stable carbon and nitrogen isotopes. Chin Acad Sci 60–61

  33. Hung CLH, So MK, Connell DW, Fung CN, Lam MHW, Nicholson S, Richardson BJ, Lam PKS (2004) A preliminary risk assessment of trace elements accumulated in fish to the Indo-Pacific Humpback dolphin (Sousa chinensis) in the Northwestern waters of Hong Kong. Chemosphere 56:643–651. https://doi.org/10.1016/j.chemosphere.2004.04.016

    Article  CAS  PubMed  Google Scholar 

  34. Sample BE, Opresko DM, Sutter II GW (1996) Toxicological benchmarks for wildlife: 1996 revision for the U.S. Department of Energy

  35. Chu I, Villeneuve DC, Yagminas A, Lecavalier P, Poon R, Hakansson H, Ahlborg UG, Valli VE, Kennedy SW, Bergman A, Seegal RF, Feeley M (1996) Toxicity of 2,4,4’-trichlorobiphenyl in rats following 90-day dietary exposure. J Toxicol Environ Health 49:301–318. https://doi.org/10.1080/00984108.1996.11667603

    Article  CAS  PubMed  Google Scholar 

  36. Chu I, Poon R, Yagminas A, Lecavalier P, Håkansson H, Valli VE, Kennedy SW, Bergman Å, Seegal RF, Feeley M (1998) Subchronic toxicity of PCB 105 (2,3,3’,4,4’-pentachlorobiphenyl) in rats. J Appl Toxicol 18:285–292. https://doi.org/10.1002/(SICI)1099-1263(199807/08)18:4%3c285::AID-JAT510%3e3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  37. Chu I, Villeneuve DC, Yagminas A, Lecavalier P, Poon R, Feeley M, Kennedy SW, Seegal RF, Häkansson H, Ahlborg UG, Valli VE (1994) Subchronic toxicity of 3,3′,4,4′,5-pentachlorobiphenyl in the rat: I. Clinical, biochemical, hematological, and histopathological changes. Toxicol Sci 22:457–468. https://doi.org/10.1093/toxsci/22.3.457

    Article  CAS  Google Scholar 

  38. Chu I, Villeneuve DC, Yagminas P, Håkansson H, Ahlborg UG, Valli VE, Kennedy SW, Bergman Å, Seegal RF, Feeley M (1995) Toxicity of PCB 77 (3,3′,4,4′-tetrachlorobiphenyl) and pcb 118 (2,3′,4,4′,5-pentachlorobiphenyl) in the rat following subchronic dietary exposure. Toxicol Sci 26:282–292. https://doi.org/10.1093/toxsci/26.2.282

    Article  CAS  Google Scholar 

  39. Chu I, Villeneuve DC, Yagminas A, Lecavalier P, Poon R, Feeley M, Kennedy SW, Seegal RF, Håkansson H, Ahlborg UG, Valli VE, Bergman Å (1996) Toxicity of 2,2′,4,4′,5,5′-hexachlorobiphenyl in rats: effects following 90-day oral exposure. J Appl Toxicol 16:121–128. https://doi.org/10.1002/(SICI)1099-1263(199603)16:2%3c121::AID-JAT320%3e3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  40. Lecavalier P, Chu I, Yagrninas A, Villeneuve DC, Poon R, Feeley M, Håkansson H, Ahlborg UG, Valli VE, Bergrnan SRF, Kennedy SW (1997) Subchronic toxicity of 2,2’,3,3’,4,4’-hexachlorobiphenyl in rats. J Toxicol Environ Health 51:265–277. https://doi.org/10.1080/00984109708984026

    Article  CAS  PubMed  Google Scholar 

  41. EPA (1988) Recommendations for and documentation of biological values for use in risk assessment. Environmental Criteria and Assessment Office, Cincinnati, OH. EPA/600/6-87/008

  42. EPD (1998) Environmental monitoring and audit for contaminated mud pits II and III at east of Sha Chau. Final report. Environmental Pollution Department, Hong Kong SAR, China

  43. Storelli MM, Barone G, Piscitelli G, Storelli A, Marcotrigiano GO (2007) Tissue-related polychlorinated biphenyls accumulation in Mediterranean cetaceans: assessment of toxicological status. Bull Environ Contam Toxicol 78:206–210. https://doi.org/10.1007/s00128-007-9126-6

    Article  CAS  PubMed  Google Scholar 

  44. Adeleye AO, Jin H, Di Y, Li D, Chen J, Ye Y (2016) Distribution and ecological risk of organic pollutants in the sediments and seafood of Yangtze Estuary and Hangzhou Bay, East China Sea. Sci Total Environ 541:1540–1548. https://doi.org/10.1016/j.scitotenv.2015.09.124

    Article  CAS  PubMed  Google Scholar 

  45. Zhou JL, Hong H, Zhang Z, Maskaoui K, Chen W (2000) Multi-phase distribution of organic micropollutants in Xiamen Harbour, China. Water Res 34:2132–2150. https://doi.org/10.1016/S0043-1354(99)00360-7

    Article  CAS  Google Scholar 

  46. Duan X, Li Y, Li X, Li M, Zhang D (2013) Distributions and sources of polychlorinated biphenyls in the coastal East China Sea sediments. Sci Total Environ 463–464:894–903. https://doi.org/10.1016/j.scitotenv.2013.06.102

    Article  CAS  PubMed  Google Scholar 

  47. Liu JP, Xu KH, Li AC, Milliman JD, Velozzi DM, Xiao SB, Yang ZS (2007) Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology 85:208–224. https://doi.org/10.1016/J.GEOMORPH.2006.03.023

    Article  Google Scholar 

  48. Oshihoi T, Isobe T, Hamada H, Yamada T, Tajima Y, Tanabe S (2010) Specific accumulation of bfrs in finless porpoises from Japan. Interdisciplinary Studies on Environmental Chemistry — Environmental Specimen Bank, pp 215–222

  49. Tanabe S (2002) Contamination and toxic effects of persistent endocrine disrupters in marine mammals and birds. Mar Pollut Bull 45:69–77. https://doi.org/10.1016/S0025-326X(02)00175-3

    Article  CAS  PubMed  Google Scholar 

  50. Addison RF, Zinck ME, Ackman RG (1972) Residues of organochlorine pesticides and polychlorinated biphenyls in some commercially produced canadian marine oils. J Fish Res Board Can 29:349–355. https://doi.org/10.1139/f72-062

    Article  CAS  Google Scholar 

  51. McLellan WA, Koopman HN, Rommel SA, Read AJ, Potter CW, Nicolas JR, Westgate AJ, Pabst DA (2002) Ontogenetic allometry and body composition of harbour porpoises (Phocoena phocoena L.) from the western North Atlantic. J Zool 257:457–471. https://doi.org/10.1017/S0952836902001061

    Article  Google Scholar 

  52. Borgå K, Fisk AT, Hoekstra PF, Muir DCG (2004) Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs. Environ Toxicol Chem 23:2367–2385. https://doi.org/10.1897/03-518

    Article  PubMed  Google Scholar 

  53. Roos R, Andersson PL, Halldin K, Hǻkansson H, Westerholm E, Hamers T, Hamscher G, Heikkinen P, Korkalainen M, Leslie HA, Niittynen M, Sankari S, Schmitz HJ, van der Ven LTM, Viluksela M, Schrenk D (2011) Hepatic effects of a highly purified 2,2′,3,4,4′,5,5′-heptachlorbiphenyl (PCB 180) in male and female rats. Toxicology 284:42–53. https://doi.org/10.1016/j.tox.2011.03.013

    Article  CAS  PubMed  Google Scholar 

  54. Schwacke LH, Voit EO, Hansen LJ, Wells RS, Mitchum GB, Hohn AA, Fair PA (2002) Probabilistic risk assessment of reproductive effects of polychlorinated biphenyls on bottlenose dolphins (Tursiops truncatus) from the Southeast United States coast. Environ Toxicol Chem 21:2752–2764. https://doi.org/10.1002/etc.5620211232

    Article  CAS  PubMed  Google Scholar 

  55. Minh TB, Watanabe M, Nakata H, Tanabe S, Jefferson TA (1999) Contamination by persistent organochlorines in small cetaceans from hong kong coastal waters. Mar Pollut Bull 39:383–392. https://doi.org/10.1016/S0025-326X(99)00066-1

    Article  CAS  Google Scholar 

  56. Kelly JF (2000) Stable isotopes of carbon and in the study of avian and mammalian trophic ecology. Can J Zool 78:1–27. https://doi.org/10.1139/cjz-78-1-1

    Article  Google Scholar 

  57. Krahn MM, Herman DP, Matkin CO, Durban JW, Barrett-Lennard L, Burrows DG, Dahlheim ME, Black N, LeDuc RG, Wade PR (2007) Use of chemical tracers in assessing the diet and foraging regions of eastern North Pacific killer whales. Mar Environ Res 63:91–114. https://doi.org/10.1016/j.marenvres.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  58. Storelli MM, Marcotrigiano GO (2000) Persistent organochlorine residues in Risso’s dolphins (Grampus griseus) from the Mediterranean Sea (Italy). Mar Pollut Bull 40:555–558. https://doi.org/10.1016/S0025-326X(00)00015-1

    Article  CAS  Google Scholar 

  59. Weisbrod AV, Shea D, Moore MJ, Stegeman JJ (2001) Species, tissue and gender-related organochlorine bioaccumulation in white-sided dolphins, pilot whales and their common prey in the northwest Atlantic. Mar Environ Res 51:29–50. https://doi.org/10.1016/S0141-1136(00)00032-5

    Article  CAS  PubMed  Google Scholar 

  60. Baker JE, Eisenreich SJ, Eadie BJ (1991) Sediment trap fluxes and benthic recycling of organic carbon, polycyclic aromatic hydrocarbons, and polychlorobiphenyl congeners in Lake Superior. Environ Sci Technol 25:500–509. https://doi.org/10.1021/ES00015A019

    Article  CAS  Google Scholar 

  61. Gouin T, Wania F (2007) Time trends of Arctic contamination in relation to emission history and chemical persistence and partitioning properties. Environ Sci Technol 41:5986–5992. https://doi.org/10.1021/ES0709730

    Article  CAS  PubMed  Google Scholar 

  62. Smith KEC, McLachlan MS (2006) Concentrations and partitioning of polychlorinated biphenyls in the surface waters of the southern Baltic Sea-seasonal effects. Environ Toxicol Chem 25:2569–2575. https://doi.org/10.1897/05-660R.1

    Article  CAS  PubMed  Google Scholar 

  63. Teil MJ, Blanchard M, Chesterikoff A, Chevreuil M (1998) Transport mechanisms and fate of polychlorinated biphenyls in the Seine river (France). Sci Total Environ 218:103–112. https://doi.org/10.1016/S0048-9697(98)00176-4

    Article  CAS  Google Scholar 

  64. Beyer A, Biziuk M (2009) Environmental fate and global distribution of polychlorinated biphenyls. Rev Environ Contam Toxicol 201:137–158. https://doi.org/10.1007/978-1-4419-0032-6_5

    Article  CAS  PubMed  Google Scholar 

  65. Boyle AW, Silvin CJ, Hassett JP, Nakas JP, Tanenbaum SW (1992) Bacterial PCB biodegradation. Biodegrad 32:285–298. https://doi.org/10.1007/BF00129089

    Article  Google Scholar 

  66. Field JA, Sierra-Alvarez R (2008) Microbial transformation and degradation of polychlorinated biphenyls. Environ Pollut 155:1–12. https://doi.org/10.1016/J.ENVPOL.2007.10.016

    Article  CAS  PubMed  Google Scholar 

  67. Pieper DH (2004) (2004) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 672:170–191. https://doi.org/10.1007/S00253-004-1810-4

    Article  Google Scholar 

  68. Boese BL, Winsor M, Lee H, Echols S, Pelletier J, Randali R (1995) PCB congeners and hexachlorobenzene biota sediment accumulation factors for Macoma nasuta exposed to sediments with different total organic carbon contents. Environ Toxicol Chem 14:303–310. https://doi.org/10.1002/ETC.5620140216

    Article  CAS  Google Scholar 

  69. Jefferson TA, Hung SK (2004) Neophocaena phocaenoides. Mamm Spec 746:1–12. https://doi.org/10.1644/746

    Article  Google Scholar 

Download references

Acknowledgements

The authors owe deepest partifue and appreciation to Prof. Cheng Sun for his great help in PCBs detection.

Funding

We thank Nanjing Yangtze Finless Porpoise Provincial Nature Reserve porpoise activity habits and habitat environment research and evaluation project, the NSF of Jiangsu Province of China (BK20171475), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

BC designed the experiment, revised manuscript; HW and XH implemented the experiment; HJ analyzed the data and completed the first draft of the manuscript; GY, Conceptualization; BC, XH checked and edited the final manuscript.

Corresponding author

Correspondence to Bingyao Chen.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interests.

Ethics approval

The experimental protocol involved in the present study was approved by the Institutional Animal Care and Use Committee of Nanjing Normal University.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Jiang, H., Wang, H. et al. Concentration of polychlorinated biphenyls and risk assessment in finless porpoises from the East China Sea. Toxicol Res. 40, 259–271 (2024). https://doi.org/10.1007/s43188-023-00221-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-023-00221-0

Keywords

Navigation