Skip to main content

Advertisement

Log in

Chemerin/CMKLR1 pathway exacerbates cisplatin-induced spiral ganglion neuron injury

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

This study investigated whether chemerin/chemokine-like receptor 1 (CMKLR1) pathway participate in cisplatin‐induced spiral ganglion neuron (SGN) damage. Middle cochlear turn was collected from C57BL/6 mice and the SGNs were cultured. Cisplatin, 2-(anaphthoyl) ethyltrimethylammonium iodide (α-NETA), or recombinant mouse chemerin was added into the medium for the treatment. Relative mRNA and protein expression was determined by RT-PCR, ELISA and Western blot, respectively. In cultured mouse cochlear SGNs, the treatment of cisplatin enhanced the secretion of chemerin and CMKLR1. Recombinant chemerin promoted but α-NETA inhibited chemerin/CMKLR1 pathway in cisplatin stimulated SGNs. Cisplatin-induced apoptosis and inflammation response in SGNs were enhanced by recombinant chemerin while inhibited by α-NETA. Recombinant chemerin promoted but α-NETA inhibited NF-κB signal in cisplatin stimulated SGNs. In conclusion, chemerin/CMKLR1 pathway regulated apoptosis and inflammation response in cisplatin-induced SGN injury through NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data could be obtained upon reasonable request to the corresponding author.

References

  1. Waissbluth S, Daniel SJ (2013) Cisplatin-induced ototoxicity: transporters playing a role in cisplatin toxicity. Hear Res 299:37–45. https://doi.org/10.1016/j.heares.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  2. van Ruijven MW, de Groot JC, Klis SF, Smoorenburg GF (2005) The cochlear targets of cisplatin: an electrophysiological and morphological time-sequence study. Hear Res 205:241–248. https://doi.org/10.1016/j.heares.2005.03.023

    Article  CAS  PubMed  Google Scholar 

  3. Yu X, Man R, Li Y, Yang Q, Li H, Yang H, Bai X, Yin H, Li J, Wang H (2019) Paeoniflorin protects spiral ganglion neurons from cisplatin-induced ototoxicity: possible relation to PINK1/BAD pathway. J Cell Mol Med 23:5098–5107. https://doi.org/10.1111/jcmm.14379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schellens JH, Planting AS, Ma J, Maliepaard M, de Vos A, de Boer DM, Verweij J (2001) Adaptive intrapatient dose escalation of cisplatin in patients with advanced head and neck cancer. Anticancer Drugs 12:667–675. https://doi.org/10.1097/00001813-200109000-00004

    Article  CAS  PubMed  Google Scholar 

  5. Rezaee R, Momtazi AA, Monemi A, Sahebkar A (2017) Curcumin: a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res 117:218–227. https://doi.org/10.1016/j.phrs.2016.12.037

    Article  CAS  PubMed  Google Scholar 

  6. Yun H, Dumbell R, Hanna K, Bowen J, McLean SL, Kantamneni S, Pors K, Wu QF, Helfer G (2022) The chemerin-CMKLR1 axis is functionally important for central regulation of energy homeostasis. Front Physiol 13:897105. https://doi.org/10.3389/fphys.2022.897105

    Article  PubMed  PubMed Central  Google Scholar 

  7. Doyle JR, Krishnaji ST, Zhu G, Xu ZZ, Heller D, Ji RR, Levy BD, Kumar K, Kopin AS (2014) Development of a membrane-anchored chemerin receptor agonist as a novel modulator of allergic airway inflammation and neuropathic pain. J Biol Chem 289:13385–13396. https://doi.org/10.1074/jbc.M113.522680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodriguez-Penas D, Feijoo-Bandin S, Garcia-Rua V, Mosquera-Leal A, Duran D, Varela A, Portoles M, Rosello-Lleti E, Rivera M, Dieguez C, Gualillo O, Gonzalez-Juanatey JR, Lago F (2015) The adipokine chemerin induces apoptosis in cardiomyocytes. Cell Physiol Biochem 37:176–192. https://doi.org/10.1159/000430343

    Article  CAS  PubMed  Google Scholar 

  9. Romani AMP (2022) Cisplatin in cancer treatment. Biochem Pharmacol 206:115323. https://doi.org/10.1016/j.bcp.2022.115323

    Article  CAS  PubMed  Google Scholar 

  10. Kros CJ, Steyger PS (2019) Aminoglycoside- and cisplatin-induced ototoxicity: mechanisms and otoprotective strategies. Cold Spring Harb Perspect Med 9:852. https://doi.org/10.1101/cshperspect.a033548

    Article  CAS  Google Scholar 

  11. Santos N, Ferreira RS, Santos ACD (2020) Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem Toxicol 136:111079. https://doi.org/10.1016/j.fct.2019.111079

    Article  CAS  PubMed  Google Scholar 

  12. Jacenik D, Fichna J (2020) Chemerin in immune response and gastrointestinal pathophysiology. Clin Chim Acta 504:146–153. https://doi.org/10.1016/j.cca.2020.02.008

    Article  CAS  PubMed  Google Scholar 

  13. Su X, Cheng Y, Zhang G, Wang B (2021) Chemerin in inflammatory diseases. Clin Chim Acta 517:41–47. https://doi.org/10.1016/j.cca.2021.02.010

    Article  CAS  PubMed  Google Scholar 

  14. Graham KL, Zhang JV, Lewen S, Burke TM, Dang T, Zoudilova M, Sobel RA, Butcher EC, Zabel BA (2014) A novel CMKLR1 small molecule antagonist suppresses CNS autoimmune inflammatory disease. PLoS ONE 9:e112925. https://doi.org/10.1371/journal.pone.0112925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tummler C, Snapkov I, Wickstrom M, Moens U, Ljungblad L, Maria Elfman LH, Winberg JO, Kogner P, Johnsen JI, Sveinbjornsson B (2017) Inhibition of chemerin/CMKLR1 axis in neuroblastoma cells reduces clonogenicity and cell viability in vitro and impairs tumor growth in vivo. Oncotarget 8:95135–95151. https://doi.org/10.18632/oncotarget.19619

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ma JW, Wang YP, Wang M, Huang TL, Shi TF, Yu M, Si JQ, Li L (2022) Role of Cav1.2 in cisplatin induced apoptosis of cochlear spiral ganglion neurons in C57BL/6J mice. Zhongguo Ying Yong Sheng Li Xue Za Zhi 38:348–355. https://doi.org/10.12047/j.cjap.6272.2022.066

    Article  PubMed  Google Scholar 

  17. Dong T, Zhang X, Liu Y, Xu S, Chang H, Chen F, Pan L, Hu S, Wang M, Lu M (2021) Opa1 prevents apoptosis and cisplatin-induced ototoxicity in murine cochleae. Front Cell Dev Biol 9:744838. https://doi.org/10.3389/fcell.2021.744838

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ruhl D, Du TT, Wagner EL, Choi JH, Li S, Reed R, Kim K, Freeman M, Hashisaki G, Lukens JR, Shin JB (2019) Necroptosis and apoptosis contribute to cisplatin and aminoglycoside ototoxicity. J Neurosci 39:2951–2964. https://doi.org/10.1523/JNEUROSCI.1384-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  19. Choudhary GS, Al-Harbi S, Almasan A (2015) Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol 1219:1–9. https://doi.org/10.1007/978-1-4939-1661-0_1

    Article  CAS  PubMed  Google Scholar 

  20. So H, Kim H, Kim Y, Kim E, Pae HO, Chung HT, Kim HJ, Kwon KB, Lee KM, Lee HY, Moon SK, Park R (2008) Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/HO-1. J Assoc Res Otolaryngol 9:290–306. https://doi.org/10.1007/s10162-008-0126-y

    Article  PubMed  PubMed Central  Google Scholar 

  21. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21:103–115. https://doi.org/10.1038/cr.2010.178

    Article  CAS  PubMed  Google Scholar 

  22. Hazlitt RA, Min J, Zuo J (2018) Progress in the development of preventative drugs for cisplatin-induced hearing loss. J Med Chem 61:5512–5524. https://doi.org/10.1021/acs.jmedchem.7b01653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Ma.

Ethics declarations

Conflict of interest

None.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 177 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Mu, Y. & Ma, L. Chemerin/CMKLR1 pathway exacerbates cisplatin-induced spiral ganglion neuron injury. Toxicol Res. 40, 73–81 (2024). https://doi.org/10.1007/s43188-023-00205-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-023-00205-0

Keywords

Navigation