Skip to main content

Advertisement

Log in

Assessment of toxicity and genotoxic safety profile of novel fisetin ruthenium-p-cymene complex in mice

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

Throughout the last decades flavonoids have been considered as a powerful bioactive molecule. Complexation of these flavonoids with metal ions demonstrated the genesis of unique organometallic complexes which provide improved pharmacological and therapeutic activities. In this research, the fisetin ruthenium-p-cymene complex was synthesized and characterized via different analytical methods like UV–visible spectroscopy, Fourier-transform infrared spectroscopy, mass spectroscopy, and scanning electron microscope. The toxicological profile of the complex was evaluated by acute and sub-acute toxicity. Additionally, the mutagenic and genotoxic activity of the complex was assessed by Ames test, chromosomal aberration test, and micronucleus based assay in Swiss albino mice. The acute oral toxicity study exhibited the LD50 of the complex at 500 mg/kg and subsequently, the sub-acute doses were selected. In sub-acute toxicity study, the hematology and serum biochemistry of the 400 mg/kg group showed upregulated white blood cells, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine, glucose and cholesterol. However, there was no treatment related alteration of hematological and serum biochemical parameters in the 50, 100, and 200 mg/kg group. In the histopathological analysis, the 50, 100, and 200 mg/kg groups were not associated with any toxicological alterations, whereas the 400 mg/kg group showed prominent toxicological incidences. Nevertheless, the treatment with fisetin ruthenium-p-cymene complex did not exhibit any mutagenic and genotoxic effect in Swiss albino mice. Thus, the safe dose of this novel organometallic complex was determined as 50, 100, and 200 mg/kg without any toxicological and genotoxic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets are presented in the main manuscript.

References

  1. Samanta A, Das G, Das SK (2011) Roles of flavonoids in plants. Int J Pharm Sci Technol 100:12–35

    Google Scholar 

  2. Feng W, Hao Z, Li M (2017) Isolation and structure identification of flavonoids. In: Flavonoids - from biosynthesis to human health. London, IntechOpen. https://doi.org/10.5772/67810

  3. Rodríguez-García C, Sánchez-Quesada C, Gaforio JJ (2019) Dietary flavonoids as cancer chemopreventive agents: an updated review of human studies. Antioxidants 8:137. https://doi.org/10.3390/antiox8050137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun Y (1990) Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic Biol Med 8:583–599. https://doi.org/10.1016/0891-5849(90)90156-d

    Article  CAS  PubMed  Google Scholar 

  5. Maher P, Akaishi T, Abe K (2006) Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci U S A 103:16568–16573. https://doi.org/10.1073/pnas.0607822103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khan N, Asim M, Afaq F, Abu Zaid M, Mukhtar H (2008) A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice. Cancer Res 68:8555–8563. https://doi.org/10.1158/0008-5472.can-08-0240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuk R, Kinae N (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130:2243–2250. https://doi.org/10.1093/jn/130.9.2243

    Article  CAS  PubMed  Google Scholar 

  8. Pal HC, Pearlman RL, Afaq F (2016) Fisetin and its role in chronic diseases. Adv Exp Med Biol 928:213–244. https://doi.org/10.1007/978-3-319-41334-1_10

    Article  CAS  PubMed  Google Scholar 

  9. Rengarajan T, Yaacob NS (2016) The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Eur J Pharmacol 789:8–16. https://doi.org/10.1016/j.ejphar.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  10. Ahmad S, Khan A, Ali W, Jo MH, Park J, Ikram M, Kim MO (2021) Fisetin rescues the mice brains against D-galactose-induced oxidative stress, neuroinflammation and memory impairment. Front Pharmacol 12:612078. https://doi.org/10.3389/fphar.2021.612078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cordaro M, D’Amico R, Fusco R, Peritore AF, Genovese T, Interdonato L, Franco G, Arangia A, Gugliandolo E, Crupi R, Siracusa R, Di Paola R, Cuzzocrea S, Impellizzeri D (2022) Discovering the effects of fisetin on NF-κB/NLRP-3/NRF-2 molecular pathways in a mouse model of vascular dementia induced by repeated bilateral carotid occlusion. Biomed 10:1448. https://doi.org/10.3390/biomedicines10061448

    Article  CAS  Google Scholar 

  12. Sun Y, Qin H, Zhang H, Feng X, Yang L, Hou DX, Chen J (2021) Fisetin inhibits inflammation and induces autophagy by mediating PI3K/AKT/mTOR signaling in LPS-induced RAW264.7 cells. Food Nutr Res. https://doi.org/10.29219/fnr.v65.6355

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kumar S, Pandey AK (2013) Phenolic content, reducing power and membrane protective activities of Solanum xanthocarpum root extracts. Vegetos–Int J Plant Res 26:301. https://doi.org/10.5958/j.2229-4473.26.1.043

    Article  Google Scholar 

  14. Ikeda NEA, Novak EM, Maria DA, Velosa AS, Pereira RMS (2015) Synthesis, characterization and biological evaluation of rutin–zinc(II) flavonoid -metal complex. Chem Biol Interact 239:184–191. https://doi.org/10.1016/j.cbi.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  15. Samsonowicz M, Regulska E, Kalinowska M (2017) Hydroxyflavone metal complexes - molecular structure, antioxidant activity and biological effects. Chem Biol Interact 273:245–256. https://doi.org/10.1016/j.cbi.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Liu Y, Wang Y, Xu M, Hu X (2018) UV–Vis spectroscopy combined with chemometric study on the interactions of three dietary flavonoids with copper ions. Food Chem 263:208–215. https://doi.org/10.1016/j.foodchem.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  17. Dimitrić Marković JM, Marković ZS, Veselinović DS, Krstić JB, Predojević Simović JD (2009) Study on fisetin–aluminium(III) interaction in aqueous buffered solutions by spectroscopy and molecular modeling. J Inorg Biochem 103:723–730. https://doi.org/10.1016/j.jinorgbio.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  18. Afanas’eva IB, Ostrakhovitch EA, Mikhal’chik EV, Ibragimova GA, Korkina LG (2001) Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals. Biochem Pharmacol 61:677–684. https://doi.org/10.1016/s0006-2952(01)00526-3

    Article  PubMed  Google Scholar 

  19. Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343–355. https://doi.org/10.1016/0076-6879(90)86128-i

    Article  CAS  PubMed  Google Scholar 

  20. Kostyuk V, Potapovich A, Vladykovskaya E, Korkina L, Afanas’ev I (2001) Influence of metal ions on flavonoid protection against asbestos-induced cell injury. Arch Biochem Biophys 385:129–137. https://doi.org/10.1006/abbi.2000.2118

    Article  CAS  PubMed  Google Scholar 

  21. Hartinger CG, Dyson PJ (2009) Bioorganometallic chemistry—from teaching paradigms to medicinal applications. Chem Soc Rev 38:391–401. https://doi.org/10.1039/b707077m

    Article  CAS  PubMed  Google Scholar 

  22. Raj Kumar R, Ramesh R, Małecki JG (2018) Synthesis and structure of arene ruthenium(II) benzhydrazone complexes: antiproliferative activity, apoptosis induction and cell cycle analysis. J Organomet Chem 862:95–104. https://doi.org/10.1016/j.jorganchem.2018.03.013

    Article  CAS  Google Scholar 

  23. Bratsos I, Simonin C, Zangrando E, Gianferrara T, Bergamo A, Alessio E (2011) New half sandwich-type Ru(ii) coordination compounds characterized by the fac-Ru(dmso-S)3 fragment: influence of the face-capping group on the chemical behavior and in vitro anticancer activity. Dalton Trans 40:9533. https://doi.org/10.1039/c1dt11043h

    Article  CAS  PubMed  Google Scholar 

  24. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin−DNA adducts. Chem Rev 99:2467–2498. https://doi.org/10.1021/cr980421n

    Article  CAS  PubMed  Google Scholar 

  25. Chu G (1994) Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem 269:787–790. https://doi.org/10.1016/s0021-9258(17)42175-2

    Article  CAS  PubMed  Google Scholar 

  26. Galanski M (2006) Recent developments in the field of anticancer platinum complexes. Recent Pat Anticancer Drug Discov 1:285–295. https://doi.org/10.2174/157489206777442287

    Article  CAS  PubMed  Google Scholar 

  27. Samimi G, Kishimoto S, Manorek G, Breaux JK, Howell SB (2006) Novel mechanisms of platinum drug resistance identified in cells selected for resistance to JM118 the active metabolite of satraplatin. Cancer Chemother Pharmacol 59:301–312. https://doi.org/10.1007/s00280-006-0271-0

    Article  CAS  PubMed  Google Scholar 

  28. Huang H, Zhang P, Yu B, Chen Y, Wang J, Ji L, Chao H (2014) Targeting nucleus DNA with a cyclometalated dipyridophenazineruthenium(II) complex. J Med Chem 57:8971–8983. https://doi.org/10.1021/jm501095r

    Article  CAS  PubMed  Google Scholar 

  29. Rahman MM, Islam MB, Biswas M, Khurshid Alam AH (2015) In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes 8:621. https://doi.org/10.1186/s13104-015-1618-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  31. Griffin SP, Bhagooli R (2004) Measuring antioxidant potential in corals using the FRAP assay. J Exp Mar Biol Ecol 302:201–211. https://doi.org/10.1016/j.jembe.2003.10.008

    Article  CAS  Google Scholar 

  32. Pennycooke JC, Cox SE, Stushnoff C (2005) Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia hybrid). Environ Exp Bot 53:225–232. https://doi.org/10.1016/j.envexpbot.2004.04.002

    Article  CAS  Google Scholar 

  33. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215. https://doi.org/10.1016/0165-1161(83)90010-9

    Article  CAS  PubMed  Google Scholar 

  34. Llana-Ruiz-Cabello M, Maisanaba S, Puerto M, Prieto AI, Pichardo S, Moyano R, González-Pérez JA, Cameán AM (2016) Genotoxicity evaluation of carvacrol in rats using a combined micronucleus and comet assay. Food Chem Toxicol 98:240–250. https://doi.org/10.1016/j.fct.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  35. Murakami M, Hirano T (2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99:1515–1522. https://doi.org/10.1111/j.1349-7006.2008.00854.x

    Article  CAS  PubMed  Google Scholar 

  36. Sliwinski T, Czechowska A, Kolodziejczak M, Jajte J, Wisniewska-Jarosinska M, Blasiak J (2009) Zinc salts differentially modulate DNA damage in normal and cancer cells. Cell Biol Int 33:542–547. https://doi.org/10.1016/j.cellbi.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  37. Costello LC, Franklin RB (2012) Cytotoxic/tumor suppressor role of zinc for the treatment of cancer: an enigma and an opportunity. Expert Rev Anticancer Ther 12:121–128. https://doi.org/10.1586/era.11.190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soto AM, Sonnenschein C (2004) The somatic mutation theory of cancer: growing problems with the paradigm? Bioassays 26:1097–1107. https://doi.org/10.1002/bies.20087

    Article  CAS  Google Scholar 

  39. Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60. https://doi.org/10.1016/s0027-5107(00)00064-6

    Article  CAS  PubMed  Google Scholar 

  40. Phillips DH, Arlt VM (2009) Genotoxicity: damage to DNA and its consequences. EXS 99:87–110. https://doi.org/10.1007/978-3-7643-8336-7_4

    Article  CAS  PubMed  Google Scholar 

  41. Genetic Alliance, The New York-Mid-Atlantic Consortium for Genetic and Newborn Screening Services (2009) Understanding genetics: a New York, Mid-Atlantic guide for patients and health professionals. Genetic alliance.

  42. Ghosh N, Sandur R, Ghosh D, Roy S, Janadri S (2017) Acute, 28days sub acute and genotoxic profiling of quercetin-magnesium complex in Swiss albino mice. Biomed Pharmacother 86:279–291. https://doi.org/10.1016/j.biopha.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  43. Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P (2010) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125–132. https://doi.org/10.1093/mutage/geq052

    Article  CAS  Google Scholar 

  44. Ikken Y, Morales P, Martínez A, Marín ML, Haza AI, Cambero MI (1999) Antimutagenic effect of fruit and vegetable ethanolic extracts against N-nitrosamines evaluated by the Ames test. J Agric Food Chem 47:3257–3264. https://doi.org/10.1021/jf990166n

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki Y, Nagae Y, Li J, Sakaba H, Mozawa K, Takahashi A, Shimizu H (1989) The micronucleus test and erythropoiesis. Effects of erythropoietin and a mutagen on the ratio of polychromatic to normochromatic erythrocytes (P/N ratio). Mutagenesis 4:420–424. https://doi.org/10.1093/mutage/4.6.420

    Article  CAS  PubMed  Google Scholar 

  46. Luzhna L, Kathiria P, Kovalchuk O (2013) Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet 4:131. https://doi.org/10.3389/fgene.2013.00131

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution for their continuous support and encouragement throughout the experiment.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by IS, SS, AD, and SR. The first draft of the manuscript was written by IS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Souvik Roy.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The animal experiment was approved by the Institutional Animal Ethics Committee and by the Animal Regulatory Body of the Government (Regd.No. 1458/PO/E/S/11/CPCSEA dated 12.05.2011).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seal, I., Sil, S., Das, A. et al. Assessment of toxicity and genotoxic safety profile of novel fisetin ruthenium-p-cymene complex in mice. Toxicol Res. 39, 213–229 (2023). https://doi.org/10.1007/s43188-022-00158-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-022-00158-w

Keywords

Navigation