Skip to main content

Advertisement

Log in

Evaluation of genotoxicity of SUNACTIVE Zn-P240 in vitro and in vivo

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

We evaluated the potential genotoxic effects of the nutrient supplement SUNACTIVE Zn-P240 in vitro and in vivo. Genotoxicity tests were performed at the Korea Testing and Research Institute, a GLP certification institution. A bacterial reverse mutation test was performed using the pre-incubation method, while the in vitro chromosome aberration test was performed using a cultured Chinese hamster lung cell line in the presence or absence of metabolic activation. The in vivo micronucleus test was performed using ICR mice. The bacterial reverse mutation test revealed that SUNACTIVE Zn-P240 did not induce genetic mutations at the tested doses in Salmonella typhimurium (TA98, TA100, TA1535, and TA1537) and Escherichia coli (WP2uvrA) tester strains. Meanwhile, the results of the in vitro chromosomal aberration and in vivo micronucleus tests revealed that SUNACTIVE Zn-P240 did not induce chromosomal aberrations. These results suggest that SUNACTIVE Zn-P240 did not exhibit mutagenic or clastogenic properties in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2-AA:

2-Aminoanthracene

9-AA:

9-Aminoacridine hydrochloride monohydrate

AF-2:

2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide

CHL:

Chinese hamster lung

CPA:

Cyclophosphamide monohydrate

FBS:

Fetal bovine serum

MNPCE:

Micronucleated polychromatic erythrocyte

NaN3 :

Sodium azide

NCE:

Normochromatic erythrocyte

OECD:

Organisation for Economic Cooperation and Development

PCE:

Polychromatic erythrocyte

RICC:

Relative increase in cell count

SEM:

Scanning electron microscopy

References

  1. Prasad AS (2014) Impact of the discovery of human zinc deficiency on health. J Trace Elem Med Biol 28:357–363. https://doi.org/10.1016/j.jtemb.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  2. Raya S, Hassan MI, Farroh KY, Hashim SA, Salaheldin TA (2016) Zinc oxide nanoparticles fortified biscuits as a nutritional supplement for zinc deficient rats. J Nanomed Res 4:81–87. https://doi.org/10.15406/jnmr.2016.04.00081

    Article  Google Scholar 

  3. Erdman JW Jr, Macdonald IA, Zeisel SH (2012) Present knowledge in nutrition. Wiley, Hoboken

    Book  Google Scholar 

  4. Powers JM, Buchanan GR (2019) Disorders of iron metabolism: new diagnostic and treatment approaches to iron deficiency. Hematol Clin 33:393–408. https://doi.org/10.1016/j.hoc.2019.01.006

    Article  Google Scholar 

  5. Wang LC, Busbey S (2005) Acquired acrodermatitis enteropathica. N Engl J Med 352:1121. https://doi.org/10.1056/NEJMicm030844

    Article  CAS  PubMed  Google Scholar 

  6. Hambidge KM (1989) Mild zinc deficiency in human subjects. In: Zinc in human biology. Springer, Berlin, pp 281–296. https://doi.org/10.1007/978-1-4471-3879-2_18

  7. Heyneman CA (1996) Zinc deficiency and taste disorders. Ann Pharmacother 30:186–187. https://doi.org/10.1177/106002809603000215

    Article  CAS  PubMed  Google Scholar 

  8. Krasovec M, Frenk E (1996) Acrodermatitis enteropathica secondary to Crohn’s disease. Dermatology 193:361–363. https://doi.org/10.1159/000246296

    Article  CAS  PubMed  Google Scholar 

  9. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18. https://doi.org/10.1016/j.jtemb.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  10. Nishi Y (1996) Zinc and growth. J Am Coll Nutr 15:340–344. https://doi.org/10.1080/07315724.1996.10718608

    Article  CAS  PubMed  Google Scholar 

  11. Wood RJ, Ronnenberg AG, King JC, Cousins RJ, Dunns JT, Burk RF, Levander OA (2005) Modern nutrition in health and disease. Biochemistry (Lippincott Illustrated Review), pp 248–270

  12. IOM (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington DC. https://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=s10026

  13. Hooper PL, Visconti L, Garry PJ, Johnson GE (1980) Zinc lowers high-density lipoprotein-cholesterol levels. JAMA 244:1960–1961. https://doi.org/10.1001/jama.1980.03310170058030

    Article  CAS  PubMed  Google Scholar 

  14. Hurrell RF (2002) Fortification: overcoming technical and practical barriers. J Nutr 132:806S-812S. https://doi.org/10.1093/jn/132.4.806S

    Article  CAS  PubMed  Google Scholar 

  15. Rossi M, Cubadda F, Dini L, Terranova ML, Aureli F, Sorbo A, Passeri D (2014) Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci Technol 40:127–148. https://doi.org/10.1016/j.tifs.2014.09.004

    Article  CAS  Google Scholar 

  16. Ishihara K, Yamanami K, Takano M, Suzumura A, Mita Y, Oka T, Juneja LR, Yasumoto K (2008) Zinc bioavailability is improved by the micronised dispersion of zinc oxide with the addition of L-histidine in zinc-deficient rats. J Nutr Sci Vitaminol 54:54–60. https://doi.org/10.3177/jnsv.54.54

    Article  CAS  PubMed  Google Scholar 

  17. MFDS (2017) Good laboratory practice regulation for non-clinical Laboratory Studies Notification No. 2017-32. Ministry of Food and Drug Safety, Korea

  18. OECD (1997) Guidelines for testing of chemicals. TG 471: Bacterial Reverse Mutation Test. https://doi.org/10.1787/9789264071247-en

  19. Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res Mutagen Relat Subj 31:347–363. https://doi.org/10.1016/0165-1161(75)90046-1

    Article  CAS  Google Scholar 

  20. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res Mutagen Relat Subj 113:173–215. https://doi.org/10.1016/0165-1161(83)90010-9

    Article  CAS  Google Scholar 

  21. OECD (1997) Guidelines for testing of chemicals. TG 473: in vitro mammalian chromosomal aberration test. https://doi.org/10.1787/9789264264649-en

  22. JEMS-MMS (1988) Japanese Environmental Mutagen Society-Mammalian Mutagenicity Study group. In: Atlas of chromosome aberration by chemicals. JEMS-MMS, Tokyo

  23. OECD (1997) Guidelines for testing of chemicals. TG 474: mammalian erythrocyte micronucleus test. https://doi.org/10.1787/9789264264762-en

  24. NRC (2010) Guide for the care and use of laboratory animals. National Research Council, Washington DC

    Google Scholar 

  25. Fisher RA (1992) Statistical methods for research workers. In: Breakthroughs in statistics. Springer, Berlin, pp 66–70. https://doi.org/10.1007/978-1-4612-4380-9_6

  26. Cochran WG (1952) The χ2 test of goodness of fit. Ann Math Stat 23:315–345. https://www.jstor.org/stable/2236678

  27. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. https://doi.org/10.1080/01621459.1952.10483441

    Article  Google Scholar 

  28. Dunnett CW (1964) New tables for multiple comparisons with a control. Biometrics 20:482–491. https://doi.org/10.2307/2528490

    Article  Google Scholar 

  29. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60. https://www.jstor.org/stable/2236101

  30. Rama RP, Kaul CL, Jena GB (2002) Genotoxicity testing, a regulatory requirement for drug discovery and development: impact of ICH guidelines. Indian J Pharmacol 34:86

    Google Scholar 

  31. Park CG, Cho HK, Shin HJ, Park KH, Lim HB (2018) Comparison of mutagenic activities of various ultra-fine particles. Toxicol Res 34:163–172. https://doi.org/10.5487/TR.2018.34.2.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zeiger E (2013) Bacterial mutation assays. Methods Mol Biol 1044:3–26. https://doi.org/10.1007/978-1-62703-529-3_1

    Article  CAS  PubMed  Google Scholar 

  33. Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res Mol Mech Mutagen 455:29–60. https://doi.org/10.1016/S0027-5107(00)00064-6

    Article  CAS  Google Scholar 

  34. Shin HJ, Cho HG, Park CK, Park KH, Lim HB (2017) Comparative in vitro biological toxicity of four kinds of air pollution particles. Toxicol Res 33:305–313. https://doi.org/10.5487/TR.2017.33.4.305

    Article  CAS  PubMed  Google Scholar 

  35. Chen Q, Tang S, Jin X, Zou J, Chen K, Zhang T, Xiao X (2009) Investigation of the genotoxicity of quinocetone, carbadox and olaquindox in vitro using Vero cells. Food Chem Toxicol 47:328–334. https://doi.org/10.1016/j.fct.2008.11.020

    Article  CAS  PubMed  Google Scholar 

  36. Ishidate M Jr (1985) The in vitro chromosomal aberration test using Chinese hamster lung (CHL) fibroblast cells in culture. Prog Mutat Res 5:427–432

    CAS  Google Scholar 

  37. Kim JY, Ri Y, Do SG, Lee YC, Park SJ (2014) Evaluation of the genotoxicity of ginseng leaf extract UG0712. Lab Anim Res 30:104–111. https://doi.org/10.5625/lar.2014.30.3.104

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate M Jr, Kirchner S, Lorge E, Morita T (2003) Report from the in vitro micronucleus assay working group. Mutat Res Toxicol Environ Mutagen 540:153–163. https://doi.org/10.1016/j.mrgentox.2003.07.005

    Article  CAS  Google Scholar 

  39. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343. https://doi.org/10.1039/C1CS15188F

    Article  CAS  PubMed  Google Scholar 

  40. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. https://doi.org/10.1126/science.1114397

    Article  CAS  PubMed  Google Scholar 

  41. Unfried K, Albrecht C, Klotz LO, Von Mikecz A, Grether-Beck S, Schins RPF (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1:52–71. https://doi.org/10.1080/00222930701314932

    Article  CAS  Google Scholar 

  42. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839. https://doi.org/10.1289/ehp.7339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595. https://doi.org/10.1016/j.biomaterials.2005.05.027

    Article  CAS  PubMed  Google Scholar 

  44. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169. https://doi.org/10.1021/nl048715d

    Article  CAS  Google Scholar 

  45. Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111:3407–3432. https://doi.org/10.1021/cr1003166

    Article  CAS  PubMed  Google Scholar 

  46. Schulze E, Ferrucci JT Jr, Poss K, Lapointe L, Bogdanova A, Weissleder R (1995) Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Investig Radiol 30:604–610. https://doi.org/10.1097/00004424-199510000-00006

    Article  CAS  Google Scholar 

  47. Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A, Gaub HE, Stölzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338. https://doi.org/10.1021/nl047996m

    Article  CAS  PubMed  Google Scholar 

  48. Kato T, Yashiro T, Murata Y, Herbert DC, Oshikawa K, Bando M, Ohno S, Sugiyama Y (2003) Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell Tissue Res 311:47–51. https://doi.org/10.1007/s00441-002-0647-3

    Article  PubMed  Google Scholar 

  49. Moon HS, Guo DD, Song HH, Kim IY, Jin HL, Kim YK, Chung CS, Choi YJ, Lee HK, Cho CS (2007) Regulation of adipocyte differentiation by PEGylated all-trans retinoic acid: reduced cytotoxicity and attenuated lipid accumulation. J Nutr Biochem 18:322–331. https://doi.org/10.1016/j.jnutbio.2006.06.004

    Article  CAS  PubMed  Google Scholar 

  50. Morris MC, Gros E, Aldrian-Herrada G, Choob M, Archdeacon J, Heitz F, Divita G (2007) A non-covalent peptide-based carrier for in vivo delivery of DNA mimics. Nucleic Acids Res 35:e49. https://doi.org/10.1093/nar/gkm053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419. https://doi.org/10.1016/S0169-409X(02)00226-0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by Chonnam National University (Grant number: 2020-1891). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF- 2021R1A2C2011673).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Choon Kim.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, JH., Lee, JY., Kim, WI. et al. Evaluation of genotoxicity of SUNACTIVE Zn-P240 in vitro and in vivo. Toxicol Res. 38, 459–467 (2022). https://doi.org/10.1007/s43188-022-00128-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-022-00128-2

Keywords

Navigation