Skip to main content
Log in

Ameliorative or corrective effects of Fig “Ficus carica” extract on nickel-induced hepatotoxicity in Wistar rats

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

Many heavy metals and metalloids (e.g., Pb, Cd, and Ni) can contaminate the environment and cause severe health problems. Through this study, investigated the possible corrective effects of Ficus carica extract (FCE) against nickel (Ni) induced stress response and damage on the liver of rats. Male Wistar rats were divided into four groups (8 rats per group) and co-treated with FCE (350 mg/kg) and exposed to Nickel chloride (10 mg/kg) for 4 weeks. The volatile compounds of FCE were characterized by solid phase micro-extraction (SPME) coupled with GC–MS, and the biochemical parameters of stress were determined. The SPME–GC/MS analysis of FCE indicated the presence of thirty (30) phyto-bioactive compounds including alcohols, aldehydes, organic acids, ketones, furans, terpenes, ester and others. The best capacity for scavenging DPPH free radicals and metal chelating were found with the IC50 values of 0.49 and 2.91 mg/mL, respectively. Ni induced damage to various macromolecules. Malondialdehyde, protein carbonyls, alanine aminotransferase and gamma glutamyl transferarse levels were significantly increased in Ni exposed group compared to control group and co-treatment with FCE reduced the levels of these parameters. In conclusion, current findings showed that Ni-induced oxidative damage and the administration of FCE can improve correct and restore the alteration in the rat liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lakshmi P, Tajdar HK, Tamanna J, Sarwat S (2006) Chemomodulatory effects of Terminalia chebula against nickel chloride induced oxidative stress and tumor promotion response in male Wistar rats. J Trace Elem Med Biol 20:233–239. https://doi.org/10.1016/j.jtemb.2006.07.003

    Article  CAS  Google Scholar 

  2. Nemmiche S (2017) Oxidative signaling response to cadmium exposure. Toxicol Sci 156:4–10. https://doi.org/10.1093/toxsci/kfw222

    Article  CAS  PubMed  Google Scholar 

  3. Kumar A, Jigyasu DK, Kumar A, Subrahmanyam G et al (2021) Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. Chemosphere 275:129996. https://doi.org/10.1016/j.chemosphere.2021.129996

    Article  CAS  PubMed  Google Scholar 

  4. Nabinger DD, Altenhofen S, Rodrigues Bitencourt PE, Nery LR, Leite CE, Moreira R et al (2018) Nickel exposure alters behavioral parameters in larval and adult zebrafish. Sc Total Environ 624:1623–1633. https://doi.org/10.1016/j.scitotenv.2017.10.057

    Article  CAS  Google Scholar 

  5. Song X, Fiati Kenstona SS, Kong L, Zhao J (2017) Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology 392:47–54. https://doi.org/10.1016/j.tox.2017.10.006

    Article  CAS  PubMed  Google Scholar 

  6. International Agency for Research on Cancer (2012) IARC monographs: arsenic, metals, Fibres, Dusts (100C)

  7. Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42:35–56. https://doi.org/10.1016/S1040-8428(01)00214-1

    Article  CAS  PubMed  Google Scholar 

  8. Das KK, Chandramouli RR, Bagoji I, Das S et al (2018) Primary concept of nickel toxicity—an overview. J Basic Clin Physiol Pharmacol 30:141–152. https://doi.org/10.1515/jbcpp-2017-0171

    Article  CAS  PubMed  Google Scholar 

  9. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17:679. https://doi.org/10.3390/ijerph17030679

    Article  CAS  Google Scholar 

  10. Filatova D, Cherpak C (2020) Mechanisms of nickel-induced cell damage in allergic contact dermatitis and nutritional intervention strategies. Endocr Metab Immune Disord Drug Targets 20:1010–1014. https://doi.org/10.2174/1871530320666200122155804

    Article  CAS  PubMed  Google Scholar 

  11. Singh A, Kumar M, Kumar V, Roy D et al (2019) Effects of nickel supplementation on antioxidant status, immune characteristics, and energy and lipid metabolism in growing cattle. Biol Trace Elem Res 190:65–75. https://doi.org/10.1007/s12011-018-1524-6

    Article  CAS  PubMed  Google Scholar 

  12. Guo H, Liu H, Wu H, Cui H et al (2019) Nickel carcinogenesis mechanism: DNA damage. Int J Mol Sci 20:4690. https://doi.org/10.3390/ijms20194690

    Article  CAS  PubMed Central  Google Scholar 

  13. Hfaïedh N, Allaqui MS, Croute F, Soleilhavoup JP, Jmmoussi K, Makniayadi F et al (2005) Interaction du jeûne intermittent sur les effets cytotoxiques rénaux du nickel chez le rat pubère. C R Biol 328:648–660. https://doi.org/10.1016/j.crvi.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  14. Chen H, Giri NC, Zhang R, Yamane K, Zhang Y, Maroney M et al (2017) Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J Biol Chem 292:10743. https://doi.org/10.1074/jbc.M109.058503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Renu K, Chakraborty R, Myakala H et al (2021) Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium)—induced hepatotoxicity—a review. Chemosphere 271:129735. https://doi.org/10.1016/j.chemosphere.2021.129735

    Article  CAS  PubMed  Google Scholar 

  16. Zambelli B, Uversky VN, Ciurli S (2016) Nickel impact on human health: an intrinsic disorder perspective. Biochim Biophys Acta Protein Proteonomics 1864:1714–1731. https://doi.org/10.1016/j.bbapap.2016.09.008

    Article  CAS  Google Scholar 

  17. Barolo MI, Ruiz Mostacero N, López SN (2014) Ficus carica L. (Moraceae): an ancient source of food and health. Food Chem 164:119–127. https://doi.org/10.1016/j.foodchem.2014.04.112

    Article  CAS  PubMed  Google Scholar 

  18. Vinson JA, Zubik L, Bose P, Samman N, Proch J (2005) Dried fruits: excellent in vitro and in vivo antioxidants. J Am Coll Nutr 24:44–50. https://doi.org/10.1080/07315724.2005.10719442

    Article  PubMed  Google Scholar 

  19. Oliveira AP, Valentão P, José AP, Branca MS, Fernando T, Andrade PB (2009) Ficus carica L.: metabolic and biological screening. Food Chem Toxicol 47:2841–2846. https://doi.org/10.1016/j.fct.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  20. Guarrera PM (2005) Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia 76:1–25. https://doi.org/10.1016/j.fitote.2004.09.006

    Article  PubMed  Google Scholar 

  21. Hira S, Gulfraz M, Saqlan Naqvi SM, Qureshi RU, Hina G (2021) Protective effect of leaf extract of Ficus carica L. against carbon tetrachloride-induced hepatic toxicity in mice and HepG2 cell line. Trop J Pharm Res 20:113–119. https://doi.org/10.4314/tjpr.v20i1.17

    Article  CAS  Google Scholar 

  22. Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT (2014) Traditional uses, phytochemistry and pharmacology of Ficus carica: a review. Pharm Biol 52:1487–1503. https://doi.org/10.3109/13880209.2014.892515

    Article  CAS  PubMed  Google Scholar 

  23. Lansky EP, Paavilainen HM, Pawlus AD, Newman RA (2008) Ficus spp. (fig): ethnobotany and potential as anticancer and antiinflammatory agents. J Ethnopharmacol 119:195–213. https://doi.org/10.1016/j.jep.2008.06.025

    Article  CAS  PubMed  Google Scholar 

  24. Yang XM, Yu W, Ou ZP, Ma HL, Liu WM, Ji XL (2009) Antioxidant and immunity activity of water extract and crude polysaccharide from Ficus carica L. fruit. Plant Foods Hum Nutr 64:167–173. https://doi.org/10.1007/s11130-009-0120-5

    Article  CAS  PubMed  Google Scholar 

  25. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  26. Dae-Ok K, Ock Kyoung C, Young Jun K, Hae-Yeon M, Chang YL (2003) Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem 51:6509–6515. https://doi.org/10.1021/jf0343074

    Article  CAS  Google Scholar 

  27. Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 33:213–217. https://doi.org/10.1021/jf00062a013

    Article  CAS  Google Scholar 

  28. Arthur Catherine L, Janusz P (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148. https://doi.org/10.1021/ac00218a019

    Article  Google Scholar 

  29. Heimler D, Vignolini P, Dini MG, Romani A (2005) Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. dry beans. J Agric Food Chem 53:3053–3056. https://doi.org/10.1021/jf049001r

    Article  CAS  PubMed  Google Scholar 

  30. Decker EA, Welch B (1990) Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38:674–677. https://doi.org/10.1021/jf00093a019

    Article  CAS  Google Scholar 

  31. Mohan GK, Pallavi E, Ravi Kumar B, Ramesh M, Venkatesh S (2007) Hepatoprotective activity of Ficus carica Linn. leaf extract against carbon tetrachloride-induced hepatotoxicity in rats. DARU J Pharm Sci 15:162–166

    Google Scholar 

  32. Das KK, Buchner V (2007) Effect of nickel exposure on peripheral tissues: role of oxidative stress in toxicity and possible protection by ascorbic acid. Rev Environ Health 22:157.  https://doi.org/10.1515/reveh.2007.22.2.157

    Article  CAS  PubMed  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  34. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  35. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

    Article  CAS  PubMed  Google Scholar 

  36. Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15:212–216. https://doi.org/10.1016/0006-2944(76)90049-1

    Article  CAS  PubMed  Google Scholar 

  37. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  38. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. https://doi.org/10.1016/0076-6879(90)86141-h

    Article  CAS  PubMed  Google Scholar 

  39. Pérez-López FR, Chedraui P, Haya J, Cuadros JL (2009) Effects of the Mediterranean diet on longevity and age-related morbid conditions. Maturitas 64:67–79. https://doi.org/10.1016/j.maturitas.2009.07.013

    Article  PubMed  Google Scholar 

  40. Cempel M, Janicka K (2002) Distribution of nickel, zinc and copper in rat organs after oral administration of nickel (II) chloride. Biol Trace Elem Res 90:215–226. https://doi.org/10.1385/BTER:90:1-3:215

    Article  CAS  PubMed  Google Scholar 

  41. Debib A, Tir-Touil A, Mothana RA, Meddah B, Sonnet P (2014) Phenolic content, antioxidant and antimicrobial activities of two fruit varieties of Algerian Ficus carica L. J Food Biochem 38:207–215. https://doi.org/10.1111/jfbc.12039

    Article  CAS  Google Scholar 

  42. Del Caro A, Piga A (2008) Polyphenol composition of peel and pulp of two Italian fresh fig fruits cultivars (Ficus carica L.). Eur Food Res Technol 226:715–719. https://doi.org/10.1007/s00217-007-0581-4

    Article  CAS  Google Scholar 

  43. Duenas M, Perez-Alonso JJ, Santos-Buelga C, Escribano-Bailon T (2008) Anthocyanin composition in fig (Ficus carica L.). J Food Compos Anal 21:107–115. https://doi.org/10.1016/j.jfca.2007.09.002

    Article  CAS  Google Scholar 

  44. Amamou F, Nemmiche S, Meziane RK, Didi A, Yazit SM, Chabane-Sari D (2015) Protective effect of olive oil and colocynth oil against cadmium-induced oxidative stress in the liver of Wistar rats. Food Chem Toxicol 78:177–184. https://doi.org/10.1016/j.fct.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  45. Gilani AH, Malik HM, Khalid HJ, Arif-ullah K, Sheikh Arshad S (2008) Ethnopharmacological studies on antispasmodic and antiplatelet activities of Ficus carica. J Ethnopharmacol 119:1–5. https://doi.org/10.1016/j.jep.2008.05.040

    Article  CAS  PubMed  Google Scholar 

  46. Veberic R, Mateja C, Franci S (2008) Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chem 106:153–157. https://doi.org/10.1016/j.foodchem.2007.05.061

    Article  CAS  Google Scholar 

  47. Russo F, Nicola C, Antonello P, Raffaele S (2017) Characterisation of volatile compounds in Cilento (Italy) figs (Ficus carica L.) cv. Dottato as affected by the drying process. Int J Food Prop 20:1366–1376. https://doi.org/10.1080/10942912.2017.1344991

    Article  Google Scholar 

  48. Oliveira AP, Luís RS, Guedes de Pinho P, Gil-Izquierdo A, Valentão P, Branca MS, Pereira JA, Andrade PB (2010) Volatile profiling of Ficus carica varieties by HS-SPME and GC–IT-MS. Food Chem 123:548–557. https://doi.org/10.1016/j.foodchem.2010.04.064

    Article  CAS  Google Scholar 

  49. Terpinc P, Tomaž P, Hanzlowsky NŠA, Ulrih NP, Abramovič H (2011) Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chem 128:62–69. https://doi.org/10.1016/j.foodchem.2011.02.077

    Article  CAS  PubMed  Google Scholar 

  50. Vuuren SFV, Viljoen AM (2007) Antimicrobial activity of limonene enantiomers and 1, 8-cineole alone and in combination. Flavour Fragr J 22:540–544. https://doi.org/10.1002/ffj.1843

    Article  CAS  Google Scholar 

  51. Chavan MJ, Wakte PS, Shinde DB (2010) Analgesic and anti-inflammatory activity of caryophyllene oxide from Annona squamosa L. bark. Phytomedicine 17:149–151. https://doi.org/10.1016/j.phymed.2009.05.016

    Article  CAS  PubMed  Google Scholar 

  52. Hennia A, Nemmiche S, Dandlen S, Graça Miguel M (2019) Myrtus communis essential oils: insecticidal, antioxidant and antimicrobial activities: a review. J Essent Oil Res 31:487–545. https://doi.org/10.1080/10412905.2019.1611672

    Article  Google Scholar 

  53. Viuda-Martosa X, Barberb J, Pérez-Álvareza A, Fernández-Lópeza J (2015) Assessment of chemical, physico-chemical, techno-functional and antioxidant properties of fig (Ficus carica L.). Ind Crops Prod 69:472–479. https://doi.org/10.1016/j.indcrop.2015.03.005

    Article  CAS  Google Scholar 

  54. Gathwan KH, Al-Karkhi IHT, AL-Mulla EAJ (2013) Hepatic toxicity of nickel chloride in mice. Res Chem Intermed 39:2537–2542. https://doi.org/10.1007/s11164-012-0780-x

    Article  CAS  Google Scholar 

  55. Samir D, Zine K (2013) Preventive effect of zinc on nickel-induced oxidative liver injury in rats. Afr J Biotech 12:7112–7119. https://doi.org/10.5897/AJB2013.12962

    Article  CAS  Google Scholar 

  56. Rao MV, Chawla SL, Sharma SR (2009) Protective role of vitamin E on nickel and/or chromium induced oxidative stress in the mouse ovary. Food Chem Toxicol 47:1368–1371. https://doi.org/10.1016/j.fct.2009.03.018

    Article  CAS  PubMed  Google Scholar 

  57. Sindhu P, Garg ML, Morgenstern P, Vogt PJ, Butz T, Dhawan DK (2004) Role of zinc in regulating the levels of hepatic elements following nickel toxicity in rats. Biol Trace Elem Res 102:161–172. https://doi.org/10.1385/BTER:102:1-3:161

    Article  Google Scholar 

  58. Winter MJ, Verweij F, Garofalo E, Ceradini S, Mckenzie EJ, Williams MA et al (2005) Tissue levels and biomarkers of organic contaminants in feral and caged chub (Leuciscus cephalus) from rivers in the West Midlands, UK. Aquat Toxicol 73:394–405. https://doi.org/10.1016/j.aquatox.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  59. Turan A, Celik I (2016) Antioxidant and hepatoprotective properties of dried fig against oxidative stress and hepatotoxicity in rats. Int J Biol Macromol 91:554–559. https://doi.org/10.1016/j.ijbiomac.2016.06.009

    Article  CAS  PubMed  Google Scholar 

  60. Pari L, Amudha K (2011) Hepatoprotective rôle of naringin on nickel-induced toxicity in maie Wistar rats. Eur J Pharmacol 650:364–370. https://doi.org/10.1016/j.ejphar.2010.09.068

    Article  CAS  PubMed  Google Scholar 

  61. Hfaïedh N, Allaqui MS, Hfaïedh M, El Feki A, Zourgui L, Croute F (2008) Protective effect of cactus (Opuntia ficus indica) cladode extract upon nickel-induced toxicity in rats. Food Chem Toxicol 46:3759–3763. https://doi.org/10.1016/j.fct.2008.09.059

    Article  CAS  PubMed  Google Scholar 

  62. Saoudi M, El Feki A (2012) Protective role of Ficus carica stem extract against hepatic oxidative damage induced by methanol in male Wistar Rats. Evid Based Complement Alternat Med 2012:150458. https://doi.org/10.1155/2012/150458

    Article  PubMed  Google Scholar 

  63. Aghel N, Kalantari H, Rezazadeh S (2011) Hepatoprotective effect of Ficus carica leaf extract on mice intoxicated with carbon tetrachloride. Iran J Pharma Res 10:63–68. PMCID: PMC3869579

    Google Scholar 

Download references

Funding

This project did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saïd Nemmiche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All animal experiments were conducted in accordance with the ethical principles and institutional guidelines of the National Institutes of Health Guide for the care and use of laboratory animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemiche, S., Ait Hamadouche, N., Nemmiche, S. et al. Ameliorative or corrective effects of Fig “Ficus carica” extract on nickel-induced hepatotoxicity in Wistar rats. Toxicol Res. 38, 311–321 (2022). https://doi.org/10.1007/s43188-021-00118-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-021-00118-w

Keywords

Navigation