Skip to main content
Log in

Vehicle Design in Aerial Robotics

  • Aerial Robotics (E Feron, Section Editor)
  • Published:
Current Robotics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Robotic technology has given rise to many advances in aviation as well as shaped the design of air vehicles. The goal of this work is to synthesize the recent advances in vehicle design as it pertains to aerial robotics. A secondary use of this work is for guidance on the different vehicle design options one has in the space of aerial robotics.

Recent Findings

Within aerial robotics, vehicle design and morphology are diversifying to meet the needs of expanding mission profiles. Robotics technology, such as robotic legs and arms, are integrating on to aerial systems with improved results.

Summary

Aerial robotic missions have grown in diversity, and choice of vehicle to accomplish a mission is important. There are many different aerial robotic platforms: rotorcraft, fixed-wing, rocketry, flapping-wing, canopy, lighter-than-air, and hybrid designs. There are also many robotic features that can be integrated into an aerial system: robotic landing gear, aerial manipulators, and interfacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright Clearance Center, Inc.)

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Feron E, Johnson EN. “Aerial robotics”. In: Siciliano B, Khatib O, editors. Springer Handbook of Robotics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. pp. 1009–1029.

  2. Liew CF, DeLatte D, Takeishi N, Yairi T. “Recent developments in aerial robotics: a survey and prototypes overview”, arXiv:1711.10085 [cs], Nov. 2017, Accessed: Mar. 15, 2021. [Online]. Available: http://arxiv.org/abs/1711.10085.

  3. Carrio A, Sampedro C, Rodriguez-Ramos A, Campoy P. A review of deep learning methods and applications for unmanned aerial vehicles. J Sens. 2017;2017:e3296874. https://doi.org/10.1155/2017/3296874.

    Article  Google Scholar 

  4. Aggarwal S, Kumar N. Path planning techniques for unmanned aerial vehicles: a review, solutions, and challenges. Comput Commun. 2020;149:270–99. https://doi.org/10.1016/j.comcom.2019.10.014.

    Article  Google Scholar 

  5. Santoso F, Garratt MA, Anavatti SG. Visual–inertial navigation systems for aerial robotics: sensor fusion and technology. IEEE Trans Autom Sci Eng. 2017;14(1):260–75. https://doi.org/10.1109/TASE.2016.2582752.

    Article  Google Scholar 

  6. Chung S, Paranjape AA, Dames P, Shen S, Kumar V. A survey on aerial swarm robotics. IEEE Trans Rob. 2018;34(4):837–55. https://doi.org/10.1109/TRO.2018.2857475.

    Article  Google Scholar 

  7. Krishna CGL, Murphy RR. “A review on cybersecurity vulnerabilities for unmanned aerial vehicles”, in 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Oct. 2017, pp. 194–199. https://doi.org/10.1109/SSRR.2017.8088163.

  8. Abdelmaksoud SI, Mailah M, Abdallah AM. Control strategies and novel techniques for autonomous rotorcraft unmanned aerial vehicles: a review. IEEE Access. 2020;8:195142–69. https://doi.org/10.1109/ACCESS.2020.3031326.

    Article  Google Scholar 

  9. Al-Kaff A, Martín D, García F, de la Escalera A, María Armingol J. Survey of computer vision algorithms and applications for unmanned aerial vehicles. Expert Syst Appl. 2018;92:447–63. https://doi.org/10.1016/j.eswa.2017.09.033.

    Article  Google Scholar 

  10. “A review on current and emerging application possibilities for unmanned aerial vehicles.” https://sciendo.com/article/https://doi.org/10.1515/ata-2016-0015 (accessed Mar. 23, 2021).

  11. González-Jorge H, Martínez-Sánchez J, Bueno M, Arias AP. “Unmanned aerial systems for civil applications: a review”, Drones, vol. 1, no. 1, Art. no. 1, Dec. 2017, doi: https://doi.org/10.3390/drones1010002.

  12. Shakhatreh H, et al. Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access. 2019;7:48572–634. https://doi.org/10.1109/ACCESS.2019.2909530.

    Article  Google Scholar 

  13. Agbeyangi AO, Odiete JO, Olorunlomerue AB. “Review on UAVs used for aerial surveillance”. 2016;3(10):7, 2016.

  14. Ham Y, Han KK, Lin JJ, Golparvar-Fard M. Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works. Vis Eng. 2016;4(1):1. https://doi.org/10.1186/s40327-015-0029-z.

    Article  Google Scholar 

  15. Trasviña-Moreno CA, Blasco R, Marco Á, Casas R, Trasviña-Castro A. “Unmanned aerial vehicle based wireless sensor network for marine-coastal environment monitoring”. Sensors. 2017;17(3): Art. no. 3. https://doi.org/10.3390/s17030460.

  16. C. F. Liew and T. Yairi, “Companion unmanned aerial vehicles: a survey”, arXiv:2001.04637 [cs], Jan. 2020, Accessed: Mar. 23, 2021. [Online]. Available: http://arxiv.org/abs/2001.04637.

  17. Kellermann R, Biehle T, Fischer L. Drones for parcel and passenger transportation: a literature review. Transp Res Interdiscip Perspect. 2020;4:100088. https://doi.org/10.1016/j.trip.2019.100088.

    Article  Google Scholar 

  18. Al Haddad C, Chaniotakis E, Straubinger A, Plötner K, Antoniou C. Factors affecting the adoption and use of urban air mobility. Transp Res Part A Policy Pract. 2020;132:696–712. https://doi.org/10.1016/j.tra.2019.12.020.

    Article  Google Scholar 

  19. Blackmore L. “Autonomous precision landing of space rockets”, N. A. of Engineering, Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2016 Symposium. National Academies Press, 2017.

  20. Cacan MR, Costello M. Adaptive control of precision guided airdrop systems with highly uncertain dynamics. J Guid Control Dyn. 2018;41(5):1025–35. https://doi.org/10.2514/1.G003039.

    Article  Google Scholar 

  21. Kim J, Kim S, Ju C, Son HI. Unmanned aerial vehicles in agriculture: a review of perspective of platform, control, and applications. IEEE Access. 2019;7:105100–15. https://doi.org/10.1109/ACCESS.2019.2932119.

    Article  Google Scholar 

  22. Siouris GM. Missile Guidance and Control Systems. Springer Science & Business Media, 2004.

  23. Ernest N, Carroll D, Schumacher C, Clark M, Cohen K, Lee G. “Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions”. J Def Manag. 2016;06. doi: https://doi.org/10.4172/2167-0374.1000144.

  24. Springer PJ. Military robots and drones: a reference handbook. ABC-CLIO. 2013.

  25. Foehn P, et al. “AlphaPilot: autonomous drone racing”, arXiv:2005.12813 [cs, eess], May 2020, Accessed: Mar. 23, 2021. [Online]. Available: http://arxiv.org/abs/2005.12813.

  26. Peloquin R, Thibault D, Desbiens AL. Design of a passive vertical takeoff and landing aquatic UAV. IEEE Robot Autom Lett. 2017;2(2):381–8. https://doi.org/10.1109/LRA.2016.2633623.

    Article  Google Scholar 

  27. Jafferis NT, Helbling EF, Karpelson M, Wood RJ. “Untethered flight of an insect-sized flapping-wing microscale aerial vehicle”. Nature. 2019;570(7762): Art. no. 7762. https://doi.org/10.1038/s41586-019-1322-0.

  28. Cai G, Chen BM, Lee TH. Unmanned rotorcraft systems. Springer Science & Business Media, 2011.

  29. Johnson W. Rotorcraft aeromechanics. Cambridge University Press, 2013.

  30. Quan Q. Introduction to multicopter design and control. Singapore: Springer Singapore, 2017. https://doi.org/10.1007/978-981-10-3382-7.

  31. Johnson W. Helicopter theory. Courier Corporation, 2012.

  32. Northon K. “NASA’s ingenuity mars helicopter succeeds in historic first flight”, NASA, Apr. 19, 2021. http://www.nasa.gov/press-release/nasa-s-ingenuity-mars-helicopter-succeeds-in-historic-first-flight (accessed May 21, 2021).

  33. “Introduction to aircraft flight dynamics | AIAA Education Series.” https://arc.aiaa.org/doi/abs/https://doi.org/10.2514/4.862052?casa_token=JfSjexl3E8EAAAAA:QT4F79qJKHwI3F5KnzUMe-LGL20ee5dtin6EmcTyBFUtgsBVakQoy1gKbG-xDYKAEDhEF6JH (accessed May 21, 2021).

  34. Brelje BJ, Martins JRRA. Electric, hybrid, and turboelectric fixed-wing aircraft: a review of concepts, models, and design approaches. Prog Aerosp Sci. 2019;104:1–19. https://doi.org/10.1016/j.paerosci.2018.06.004.

    Article  Google Scholar 

  35. Krishnan A, Krishnan A, Kearney J, Costello M, Glezer A. Aero-driven bleed-air applied to roll control. J Aircr. 2020;57(4):652–63. https://doi.org/10.2514/1.C035680.

    Article  Google Scholar 

  36. Zufferey R, et al. “Consecutive aquatic jump-gliding with water-reactive fuel”. Sci Robot. 2019;4(34). https://doi.org/10.1126/scirobotics.aax7330.

  37. Zufferey R, et al. SailMAV: design and implementation of a novel multi-modal flying sailing robot. IEEE Robot Autom Lett. 2019;4(3):2894–901. https://doi.org/10.1109/LRA.2019.2921507.

    Article  Google Scholar 

  38. Tan YH, Siddall R, Kovac M. Efficient aerial–aquatic locomotion with a single propulsion system. IEEE Robot Autom Lett. 2017;2(3):1304–11. https://doi.org/10.1109/LRA.2017.2665689.

    Article  Google Scholar 

  39. Moore J, Fein A, Setzler W. “Design and analysis of a fixed-wing unmanned aerial-aquatic vehicle”, in 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018:1236–1243. https://doi.org/10.1109/ICRA.2018.8461240.

  40. Siddall R, Ortega Ancel A, Kovač M. Wind and water tunnel testing of a morphing aquatic micro air vehicle. Interface Focus. 2017;7(1):20160085. https://doi.org/10.1098/rsfs.2016.0085.

    Article  Google Scholar 

  41. Blackmore L. Autonomous precision landing of space rockets. Inin Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2016 Symposium 2016 (Vol. 46, pp. 15–20).

  42. Ma L, Wang K, Shao Z, Song Z, Biegler LT. Direct trajectory optimization framework for vertical takeoff and vertical landing reusable rockets: case study of two-stage rockets. Eng Optim. 2019;51(4):627–45. https://doi.org/10.1080/0305215X.2018.1472774.

    Article  MathSciNet  Google Scholar 

  43. Carlucci D, Pellen R, Pritchard J, Demassi W. “Smart Projectiles: design guidelines and development process keys to success”, ARMY ARMAMENT RESEARCH DEVELOPMENT AND ENGINEERING CENTER PICATINNY ARSENAL NJ MUNITIONS ENGINEERING TECHNOLOGY CENTER. 2010. Accessed: May 21, 2021. [Online]. Available: https://apps.dtic.mil/sti/citations/ADA531374

  44. Shneydor NA. Missile guidance and pursuit: kinematics, dynamics and control. Elsevier, 1998.

  45. Shyy W, Aono H, Kang C, Liu H. An introduction to flapping wing aerodynamics. Cambridge University Press, 2013.

  46. James J, Iyer V, Chukewad Y, Gollakota S, Fuller SB. “Liftoff of a 190 mg laser-powered aerial vehicle: the lightest wireless robot to fly”, in 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018:3587–3594. https://doi.org/10.1109/ICRA.2018.8460582.

  47. Devalla V, Prakash O. Developments in unmanned powered parachute aerial vehicle: a review. IEEE Aerosp Electron Syst Mag. 2014;29(11):6–20. https://doi.org/10.1109/MAES.2014.130173.

    Article  Google Scholar 

  48. Bergeron K, Ward M, Costello M. “Aerodynamic effects of parafoil upper surface bleed air actuation”, in AIAA Atmospheric Flight Mechanics Conference, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2012-4737.

  49. Slegers N, Beyer E, Costello M. Use of variable incidence angle for glide slope control of autonomous parafoils. J Guid Control Dyn. 2008;31(3):585–96. https://doi.org/10.2514/1.32099.

    Article  Google Scholar 

  50. Sebbane YB, Lighter than air robots: guidance and control of autonomous airships. Springer Science & Business Media, 2011.

  51. Hall JL, et al. An aerobot for global in situ exploration of Titan. Adv Space Res. 2006;37(11):2108–19. https://doi.org/10.1016/j.asr.2004.11.033.

    Article  Google Scholar 

  52. Babu KMK, Pant RS. A review of lighter-than-air systems for exploring the atmosphere of Venus. Prog Aerosp Sci. 2020;112:100587. https://doi.org/10.1016/j.paerosci.2019.100587.

    Article  Google Scholar 

  53. .Kim D, Costello M. “Virtual model control of rotorcraft with articulated landing gear for shipboard landing”, in AIAA Guidance, Navigation, and Control Conference, 2016, p. 1863.

  54. León B, Rimoli JJ, Di Leo CV. “Ground and flight tests of a cable-driven robotic landing gear for rotorcraft”, Vertical Flight Society’s Forum, Vol. 75, Vertical Flight Soc., Philadelphia, PA. 2019, Paper 294.

  55. • Stolz B, et al. “An adaptive landing gear for extending the operational range of helicopters”, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018, pp. 1757–1763. State of the art RLG with focus on lightweight design.

  56. Yashin G, Egorov A, Darush Z, Zherdev N, Tsetserukou D. LocoGear: locomotion analysis of robotic landing gear for multicopters. IEEE Journal on Miniaturization for Air and Space Systems. 2020;1(2):138–47.

    Article  Google Scholar 

  57. Paul H, Miyazaki R, Ladig R, Shimonomura K. “Landing of a multirotor aerial vehicle on an uneven surface using multiple on-board manipulators”, in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019, pp. 1926–1933.

  58. .Manivannan V, Langley J, Costello M, Ruzzene M. “Rotorcraft slope landings with articulated landing gear”, AIAA Atmospheric Flight Conference, 2013.

  59. Wachlin JT. “Computational improvements of a multibody dynamic simulation algorithm applied to a landing event simulation of a flexible legged Europa lander”, Thesis, Georgia Institute of Technology, 2018.

  60. “Helicopter flying handbook”, Federal Aviation Administration, U.S. Department of Transportation, 2012, pp. 11.11–11.14.

  61. Goh K, Boix DM, McWhinnie J, Smith G. “Control of rotorcraft landing gear on different ground conditions”, in 2016 IEEE International Conference on Mechatronics and Automation. 2016, pp. 181–186.

  62. Boix DM, Goh K, McWhinnie J. “Modelling and control of helicopter robotic landing gear for uneven ground conditions”, in 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS). 2017, pp. 60–65.

  63. Hu D, Li Y, Xu M, Tang Z. Research on UAV adaptive landing gear control system. J Phys: Conf Ser. 2018;1061:012019. https://doi.org/10.1088/1742-6596/1061/1/012019.

    Article  Google Scholar 

  64. Kiefer J, Ward M, Costello M. “Rotorcraft hard landing mitigation using robotic landing gear”, J Dyn Syst Meas Control. 2016;138(3).

  65. • Di Leo CV, et al. “Design of a crashworthy cable-driven four-bar link robotic landing gear system”, J Aircr. 2020;57(2):224–244. State of the art RLG with focus on mitigating impacts.

  66. Sarkisov YS, Yashin GA, Tsykunov EV, Tsetserukou D. Dronegear: a novel robotic landing gear with embedded optical torque sensors for safe multicopter landing on an uneven surface. IEEE Robot Autom Lett. 2018;3(3):1912–7.

    Article  Google Scholar 

  67. León B, Rimoli JJ, Di Leo CV. Elastomer encapsulated pressure sensor with engineered air cavity for force sensing. IEEE Sens J. 2019;19(16):6628–43. https://doi.org/10.1109/JSEN.2019.2912515.

    Article  Google Scholar 

  68. Tang H, Zhang D, Gan Z. “Control system for vertical take-off and landing vehicle’s adaptive landing based on multi-sensor data fusion”. Sensors. 2020;20(16) Art. no. 16. https://doi.org/10.3390/s20164411.

  69. Arns M. “Novel reconfigurable delta robot dual-functioning as adaptive landing gear and manipulator”, Thesis, York University, Toronto, Ontario, 2019.

  70. Pounds PEI, Bersak DR, Dollar AM. Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control. Auton Robot. 2012;33(1):129–42. https://doi.org/10.1007/s10514-012-9280-5.

    Article  Google Scholar 

  71. Heredia G, et al. “Control of a multirotor outdoor aerial manipulator”, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 3417–3422. https://doi.org/10.1109/IROS.2014.6943038.

  72. Suarez A, Soria PR, Heredia G, Arrue BC, Ollero A. “Anthropomorphic, compliant and lightweight dual arm system for aerial manipulation”, in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017, pp. 992–997. https://doi.org/10.1109/IROS.2017.8202266.

  73. Zhao M, Anzai T, Shi F, Chen X, Okada K, Inaba M. Design, modeling, and control of an aerial robot DRAGON: a dual-rotor-embedded multilink robot with the ability of multi-degree-of-freedom aerial transformation. IEEE Robot Autom Lett. 2018;3(2):1176–83. https://doi.org/10.1109/LRA.2018.2793344.

    Article  Google Scholar 

  74. • Ruggiero F, Lippiello V, Ollero A. “Aerial manipulation: a literature review”. IEEE Robot Autom Lett. 2018;3(3):1957–1964. https://doi.org/10.1109/LRA.2018.2808541. Good Recent Review of Aerial Manipulators.

  75. Ding X, Guo P, Xu K, Yu Y. A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems. Chin J Aeronaut. 2019;32(1):200–14. https://doi.org/10.1016/j.cja.2018.05.012.

    Article  Google Scholar 

  76. Meng X, He Y, Han J. Survey on aerial manipulator: system, modeling, and control. Robotica. 2020;38(7):1288–317. https://doi.org/10.1017/S0263574719001450.

    Article  Google Scholar 

  77. Mendoza-Mendoza J, Gonzalez-Villela VJ, Aguilar-Ibañez C, Suarez-Castañon MS, Fonseca-Ruiz L. Snake aerial manipulators: a review. IEEE Access. 2020;8:28222–41. https://doi.org/10.1109/ACCESS.2020.2971247.

    Article  Google Scholar 

  78. Kamel M, Alexis K, Siegwart R. “Design and modeling of dexterous aerial manipulator”, in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016, pp. 4870–4876. https://doi.org/10.1109/IROS.2016.7759715.

  79. Tognon M, et al. A truly-redundant aerial manipulator system with application to push-and-slide inspection in industrial plants. IEEE Robot Autom Lett. 2019;4(2):1846–51. https://doi.org/10.1109/LRA.2019.2895880.

    Article  MathSciNet  Google Scholar 

  80. Sarkisov YS, et al. “Development of SAM: cable-suspended aerial manipulator*”, in 2019 International Conference on Robotics and Automation (ICRA). 2019, pp. 5323–5329. https://doi.org/10.1109/ICRA.2019.8793592.

  81. Hamaza S, et al. Sensor installation and retrieval operations using an unmanned aerial manipulator. IEEE Robot Autom Lett. 2019;4(3):2793–800. https://doi.org/10.1109/LRA.2019.2918448.

    Article  Google Scholar 

  82. Trujillo MÁ, Martínez-de Dios JR, Martín C, Viguria A, Ollero A. “Novel aerial manipulator for accurate and robust industrial NDT contact inspection: a new tool for the oil and gas inspection industry”, Sensors. 2019;19(6). Art. no. 6. https://doi.org/10.3390/s19061305.

  83. Zhang G, et al. “Grasp a moving target from the air: system control of an aerial manipulator”, in 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018, pp. 1681–1687. https://doi.org/10.1109/ICRA.2018.8461103.

  84. Saldaña D, Gabrich B, Li G, Yim M, Kumar V. “ModQuad: the flying modular structure that self-assembles in Midair”, in 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018, pp. 691–698. https://doi.org/10.1109/ICRA.2018.8461014.

  85. Warner J, Rogers J. Experimental investigation of on-ground flightworthiness determination for modular vertical lift vehicles. J Aircr. 2019;56(3):1135–48. https://doi.org/10.2514/1.C035201.

    Article  Google Scholar 

  86. Valasek J, Gunnam K, Kimmett J, Tandale MD, Junkins JL, Hughes D. Vision-based sensor and navigation system for autonomous air refueling. J Guid Control Dyn. 2005;28(5):979–89. https://doi.org/10.2514/1.11934.

    Article  Google Scholar 

  87. Cloutier JR, Evers JH, Feeley JJ. Assessment of air-to-air missile guidance and control technology. IEEE Control Syst Mag. 1989;9(6):27–34. https://doi.org/10.1109/37.41440.

    Article  Google Scholar 

  88. “X-34 rocket plane takes to the sky as part of safety check”, NASA

  89. Wilson D, Göktogan A, Sukkarieh S. “Guidance and navigation for UAV airborne docking”, undefined, 2015, Accessed: May 15, 2021. [Online]. Available: /paper/Guidance-and-Navigation-for-UAV-Airborne-Docking-Wilson-G%C3%B6ktogan/40c76894fffa1e6b604077c14c5c132c0497db7e

  90. Oung R, D’Andrea R. The distributed flight array. Mechatronics. 2011;21(6):908–17. https://doi.org/10.1016/j.mechatronics.2010.08.003.

    Article  Google Scholar 

  91. • Li G, Gabrich B, Saldaña D, Das J, Kumar V, Yim M. “ModQuad-Vi: a vision-based self-assembling modular quadrotor”, in 2019 International Conference on Robotics and Automation (ICRA). 2019, pp. 346–352. https://doi.org/10.1109/ICRA.2019.8794056. Recent modular aerial robot that avoids dependence on external systems.

  92. Gandhi N, Saldaña D, Kumar V, Phan LTX. Self-reconfiguration in response to faults in modular aerial systems. IEEE Robot Autom Lett. 2020;5(2):2522–9. https://doi.org/10.1109/LRA.2020.2970685.

    Article  Google Scholar 

  93. Gabrich B, Saldaña D, Kumar V, Yim M. “A flying gripper based on cuboid modular robots”, in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 7024–7030. https://doi.org/10.1109/ICRA.2018.8460682.

  94. Montalvo C, Costello M. Meta aircraft flight dynamics. J Aircr. 2015;52(1):107–15. https://doi.org/10.2514/1.C032634.

    Article  Google Scholar 

  95. Anderson B, Warner J, Rogers JD. “Modeling, simulation, and control of modular vertical lift air vehicles”, presented at the AIAA Modeling and Simulation Technologies Conference, Grapevine, Texas. 2017. https://doi.org/10.2514/6.2017-0580.

  96. Warner J, Rogers J. Autonomous flightworthiness determination for modular vertical lift vehicles. J Aircr. 2018;55(5):1955–69. https://doi.org/10.2514/1.C034827.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Costello.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Aerial Robotics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, C., Costello, M. Vehicle Design in Aerial Robotics. Curr Robot Rep 2, 415–426 (2021). https://doi.org/10.1007/s43154-021-00069-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43154-021-00069-y

Keywords

Navigation