Skip to main content

Advertisement

Log in

Planetary Surface Mobility and Exploration: A Review

  • Space Robotics (Y Gao, Section Editor)
  • Published:
Current Robotics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

With the continued interest in scientific space exploration and rapid development of the commercialized space sector, there have been a wide array of exploration technologies proposed for planetary mobility. This paper aims to survey these new technologies, explain the motivations and challenges of traversing different space environments, and describe why certain approaches will be more ubiquitous.

Recent Findings

A continued dominance by four- and six-wheeled vehicles for lunar and Martian exploration due to reliability, simplicity, and efficiency is observed. However, there is an emergence of alternative wheeled vehicle kinematics, other legged locomotion, and flying, climbing, or hopping robots when these designs confer specific advantages.

Summary

The engineering maxim “form follows function” is strongly represented within the array of robotic planetary explorer designs. The limitations of an irradiated, dusty, vacuous, remote operating environment which prioritizes efficiency and robust operation often lead to small iterations on working designs because deviations from the status quo are simply not feasible or deemed too risky. Those proposed designs which do deviate have clear justifications driven by their particular environments or intended purpose. Engineers developing future planetary exploring robots for space environments may find these considerations useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Yoshida K, Wilcox B. Space robots, Springer handbook of robotics; 2008. p. 1031–63.

  2. Lindemann RA, Bickler DB, Harrington BD, Ortiz GM, Voothees CJ. Mars exploration rover mobility development. IEEE Robotics & Automation Magazine. 2006;13(2):19.

    Article  Google Scholar 

  3. Heverly M, Matthews J, Lin J, Fuller D, Maimone M, Biesiadecki J, et al. Traverse performance characterization for the mars science laboratory rover. Journal of Field Robotics. 2013;30(6):835.

    Article  Google Scholar 

  4. Muirhead BK. Mars rovers, past and future. 2004 IEEE aerospace conference proceedings (IEEE Cat No 04TH8720). 2004;1(IEEE, 2004) vol. 1.

  5. Z. Sun, Y. Jia, H. Zhang, Technological advancements and promotion roles of chang’e-3 lunar probe mission, Science China Technological Sciences 56(11), 2702 (2013)

  6. Young AH. The lunar roving vehicle subsystems, lunar and planetary rovers: the wheels of Apollo and the quest for Mars; 2007. p. 29–56.

  7. Apostolopoulos DS. Analytical configuration of wheeled robotic locomotion. The Robotics Institute of Carnegie Mellon University Technical Report CMU-RI-TR-01-08. 2001.

  8. Nayar H, Kim J, Chamberlain-Simon B, Carpenter K, Hans M, Boettcher A, et al. Design optimization of a lightweight rocker–bogie rover for ocean worlds applications. Int J Adv Robot Syst. 2019;16(6):1729881419885696.

    Article  Google Scholar 

  9. •• Rodŕıguez-Mart́ınez D, Van Winnendael M, Yoshida K. High-speed mobility on planetary surfaces: a technical review. Journal of Field Robotics. 2019;36(8):1436 The review is a thorough evaluation of wheeled mobility across planetary surfaces using a terramechanics lens to study principles of success as well as discussing those models’ limitations. It also provides a set of design recommendations and examines the possible limitations of high-speed mobility and pitfalls of planetary surface operation.

    Article  Google Scholar 

  10. Bartlett P, Wettergreen D, Whittaker WRL. Design of the Scarab rover for mobility and drilling in the lunar cold traps. In: Proceedings of International Symposium on Artificial Intelligence, Robotics and Automation in Space; 2008.

  11. Wettergreen D, Moreland S, Skonieczny K, Jonak D, Kohanbash D, Teza J. Design and field experimentation of a prototype lunar prospector. The International Journal of Robotics Research. 2010;29(12):1550.

    Article  Google Scholar 

  12. Skonieczny K, Wettergreen D, Whittaker W. Advantages of continuous excavation in lightweight planetary robotic operations. The International Journal of Robotics Research. 2016;35(9):1121.

    Article  Google Scholar 

  13. Andrade, G., BenAmar, F., Bidaud, P., & Chatila, R. (1998). Modeling wheel-sand interaction for optimization of a rolling-peristaltic motion of a marsokhod robot. In International Conference on Intelligent Robots and Systems (pp. 576-581)

  14. Amar FB, Grand C, Besseron G, Plumet F. Performance evaluation of locomotion modes of an hybrid wheel-legged robot for self-adaptation to ground conditions. In: Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk; 2004. p. 1–7.

  15. Inotsume H, Sutoh M, Nagaoka K, Nagatani K, Yoshida K. Evaluation of the reconfiguration effects of planetary rovers on their lateral traversing of sandy slopes. In: 2012 IEEE International Conference on Robotics and Automation: IEEE; 2012. p. 3413–8.

  16. Inotsume H, Sutoh M, Nagaoka K, Nagatani K, Yoshida K. Modeling, analysis, and control of an actively reconfigurable planetary rover for traversing slopes covered with loose soil. Journal of Field Robotics. 2013;30(6):875.

    Article  Google Scholar 

  17. Inotsume H, Skonieczny K, Wettergreen DS. Analysis of grouser performance to develop guidelines for design for planetary rovers. In: Proceedings of the 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i- SAIRAS 2014); 2014.

  18. Creager C, Johnson K, Plant M, Moreland S, Skonieczny K. Push–pull locomotion for vehicle extrication. J Terrramech. 2015;57:71–80.

    Article  Google Scholar 

  19. Andrews DR. Resource prospector (RP)-early prototyping and development. In: AIAA SPACE 2015 Conference and Exposition; 2015. p. 4460.

  20. Colaprete D, Andrews W, Bluethmann RC, El-phic BB, Trimble J, Zacny K, et al. An overview of the volatiles investigating polar exploration rover (viper) mission. AGUFM. 2019, 2019:P34B.

  21. Bickel VT, Kring DA. Lunar south pole boulders and boulder tracks: implications for crew and rover traverses. Icarus. 2020:113850.

  22. Shrivastava S, Karsai A, Aydin YO, Pettinger R, Bluethmann W, Ambrose RO, et al. Material remodeling and unconventional gaits facilitate locomotion of a robophysical rover over granular terrain. Science Robotics. 2020;5(42):eaba3499.

    Article  Google Scholar 

  23. Moreland S, Skonieczny K, Inotsume H, Wettergreen D. Soil behavior of wheels with grousers for planetary rovers. In: 2012 IEEE Aerospace Conference: IEEE; 2012. p. 1–8.

  24. Michaud S, Hoepflinger M, Thueer T, Lee C, Krebs A, Despont B, et al. Lesson learned from exomars locomotion system test campaign. In: Proceedings of 10th Workshop on Advanced Space Technologies for Robotics and Automation, ESTEC The Netherlands; 2008.

  25. Silva N, Lancaster R, Clemmet J. ExoMars Rover vehicle mobility functional architecture and key design drivers. In: 12th Symp. on Advanced Space Technologies in Robotics and Automation (ASTRA); 2013.

  26. Poulakis P, Vago J, Loizeau D, Vicente Arevalo C, Hutton A, McCoubrey R, et al. Overview and development status of the exomars rover mobility subsystem. Advanced Space Technologies for Robotics and Automation. 2015:1–8.

  27. Vago JL, Westall F, Coates AJ, Jaumann R, Ko-rablev O, Ciarletti V, et al. Habitability on early mars and the search for biosignatures with the exomars rover. Astrobiology. 2017;17(6-7):471.

    Article  Google Scholar 

  28. Roehr TM, Cordes F, Kirchner F. Reconfigurable integrated multirobot exploration system (rimres): heterogeneous modular reconfigurable robots for space exploration. Journal of Field Robotics. 2014;31(1):3.

    Article  Google Scholar 

  29. Cordes F, Babu A. SherpaTT: a versatile hybrid wheeled-leg rover. In: Proceedings of the 13th Inter- national Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS 2016); 2016.

  30. Cordes F, Babu A, Kirchner F. Static force distribution and orientation control for a rover with an actively articulated suspension system. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): IEEE; 2017. p. 5219–24.

  31. • Cordes F, Kirchner F, Babu A. Design and field testing of a rover with an actively articulated suspension system in a mars analog terrain. Journal of Field Robotics. 2018;35(7):1149 This study provides detailed design discussions and robust testing results, including slope climbing, from a novel articulated planetary rover which will become more relevant as higher DOF space robots are adopted.

    Article  Google Scholar 

  32. ResourceProspector. https://en.wikipedia.org/wiki/Resource_Prospector_(rover) (2015). [Online; accessed 11-November-2020]

  33. MikePeel. https://creativecommons.org/licenses/by-sa/4.0/deed.en (2009). [Online; accessed 11- November-2020]

  34. Dimastrogiovanni M, Cordes F, Reina G. Terrain estimation for planetary exploration robots. Appl Sci. 2020;10(17):6044.

    Article  Google Scholar 

  35. Sonsalla, R. U., Akpo, J. B., & Kirchner, F. (2015, May). Coyote III: development of a modular and highly mobile micro rover. In Proc. of the 13th Symp. on Advanced Space Technologies in Robotics and Automation (ASTRA-2015).

  36. Schreiber DA, Richter F, Bilan A, Gavrilov PV, Lam HM, Price CH, et al. ARCSnake: an Archimedes’ screw-propelled, reconfigurable serpentine robot for complex environments. In: 2020 IEEE International Conference on Robotics and Automation (ICRA): IEEE; 2020. p. 7029–34.

  37. Thoesen A, Ramirez S, Marvi H. Screw-powered propulsion in granular media: an experimental and computational study. In: 2018 IEEE In- ternational Conference on Robotics and Automation (ICRA): IEEE; 2018. p. 1–6.

  38. Thoesen S, Ramirez H. Marvi, Screw-generated forces in granular media: experimental, computational, and analytical comparison. AIChE J. 2019;65(3):894–903.

    Article  Google Scholar 

  39. Thoesen T, McBryan H. Marvi, Helically-driven granular mobility and gravity-variant scaling relations. RSC Adv. 2019;9(22):12572–9.

    Article  Google Scholar 

  40. Thoesen T, McBryan D, Mick M, Green J, Martia H. Marvi, Comparative performance of granular scaling laws for lightweight grouser wheels in sand and lunar simulant. Powder Technol. 2020;373:336–46.

    Article  Google Scholar 

  41. Thoesen T, McBryan M, Green D, Mick J, Martia H. Marvi, Revisiting scaling laws for robotic mobility in granular media. IEEE Robotics and Automation Letters. 2020;5(2):1319–25.

    Article  Google Scholar 

  42. Thoesen T, McBryan D, Mick M, Green J, Martia H. Marvi, Granular scaling laws for helically driven dynamics. Phys Rev E. 2020;102(3):032902.

    Article  Google Scholar 

  43. Thoesen. Helically-driven dynamics in granular media. Ph.D. thesis, Arizona State University (2019)

  44. Agarwal S, Senatore C, Zhang T, Kingsbury M, Iag-nemma K, Goldman DI, et al. Modeling of the interaction of rigid wheels with dry granular media. J Terrramech. 2019;85:1.

    Article  Google Scholar 

  45. Olmedo NA, Lipsett MG. Design and field experimentation of a robotic system for tailings characterization. Journal of Unmanned Vehicle Systems. 2016;4(3):169.

    Article  Google Scholar 

  46. Ono M, Carpenter K, Cable ML, Wilcox BH, Tosi LP. Exobiology extant life surveyor (eels). AGUFM. 2019;2019:P21D.

    Google Scholar 

  47. Rimoli JJ. On the impact tolerance of tensegrity-based planetary landers. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; 2016. p. 1511.

  48. Kim K, Chen LH, Cera B, Daly M, Zhu E, Despois J, et al. Hopping and rolling locomotion with spherical tensegrity robots. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): IEEE; 2016. p. 4369–76.

  49. Gebara CA, Carpenter KC, Woodmansee A. Tensegrity ocean world landers. In: AIAA Scitech 2019 Forum; 2019. p. 0868.

  50. Agogino AK, SunSpiral V, Atkinson D. Super ball bot - structures for planetary landing and exploration. NASA. 2018.

  51. Vespignani M, Friesen JM, SunSpiral V, Bruce J. Design of superball v2, a compliant tensegrity robot for absorbing large impacts. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): IEEE; 2018. p. 2865–71.

  52. Hebert P, Bajracharya M, Ma J, Hudson N, Aydemir A, Reid J, et al. Mobile manipulation and mobility as manipulation—design and algorithms of RoboSimian. Journal of Field Robotics. 2015;32(2):255–74.

    Article  Google Scholar 

  53. Kerber L, Nesnas I, Keszthelyi L, Head J, Denevi B, Hayne P, et al. Moon diver: a discovery mission concept for understanding the history of the mare basalts through the exploration of a lunar mare pit. LPICo. 2018;2070:6032.

    Google Scholar 

  54. Kerber L, Team MD. Moon diver: Journey into the ancient lavas of the moon. LPICo. 2020;2197:1049.

    Google Scholar 

  55. Nesnas IA, Abad-Manterola P, Edlund JA, Burdick JW. Axel mobility platform for steep terrain excursions and sampling on planetary surfaces. In: 2008 IEEE Aerospace Conference: IEEE; 2008. p. 1–11.

  56. Nesnas IA, Matthews JB, Abad-Manterola P, Burdick JW, Edlund JA, Morrison JC, et al. Axel and duaxel rovers for the sustainable exploration of extreme terrains. Journal of Field Robotics. 2012;29(4):663.

    Article  Google Scholar 

  57. Nesnas IA, Kerber L, Parness A, Kornfeld R, Sel-lar G, McGarey P, et al. Moon diver: a discovery mission concept for understanding the history of secondary crusts through the exploration of a lunar mare pit. In: 2019 IEEE Aerospace Conference: IEEE; 2019. p. 1–23.

  58. McGarey P, Nguyen T, Pailevanian T, Nensas I. Design and test of an electromechanical rover tether for the exploration of vertical lunar pits. In: 2020 IEEE Aerospace Conference: IEEE; 2020. p. 1–10.

  59. Parness. Anchoring foot mechanisms for sampling and mobility in microgravity. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on: IEEE; 2011. p. 6596–9.

  60. Parness A, Frost M, Thatte N, King JP. Gravity-independent mobility and drilling on natural rock using microspines. In: Robotics and Automation (ICRA), 2012 IEEE International Conference on: IEEE; 2012. p. 3437–42.

  61. Parness A, Frost M. Microgravity coring: a self-contained anchor and drill for consolidated rock. In: Aerospace Conference, 2012 IEEE: IEEE; 2012. p. 1–7.

  62. Parness M, Frost N, Thatte JP, King K, Witkoe M, Nevarez M, et al. Kennedy, Gravity-independent rock-climbing robot and a sample acquisition tool with microspine grippers. Journal of Field Robotics. 2013;30(6):897–915.

    Article  Google Scholar 

  63. Martone M, Pavlov C, Zeloof A, Bahl V, Johnson AM. Enhancing the vertical mobility of a robot hexapod using microspines. arXiv preprint arXiv. 2019:1906.04811.

  64. Parness A, Willig A, Berg M, Shekels V, Arutyunov C, Dandino B, et al. 2017 IEEE Aerospace Conference: IEEE; 2017. p. 1–10.

  65. Backus SB, Onishi R, Bocklund A, Berg A, Con-treras ED, Parness A. Design and testing of the jpl-nautilus gripper for deep-ocean geological sampling. Journal of Field Robotics. 2020;37(6):972.

    Article  Google Scholar 

  66. Parness A, Abcouwer N, Fuller C, Wiltsie N, Nash J, Kennedy B. A microspine tool: grabbing and anchoring to boulders on the asteroid redirect mission. In: 2017 IEEE international conference on robotics and automation (ICRA): IEEE; 2017. p. 5467–73.

  67. Dietsch J, Kennedy B, Okon A, Aghazarian H, Badescu M, Bao X, et al. Lemur iib: a robotic system for steep terrain access. An International Journal: Industrial Robot; 2006.

  68. Uckert K, Parness A, Chanover N, Eshelman EJ, Abcouwer JN, Detry R, et al. Investigating habitability with an integrated rock-climbing robot and astrobiology instrument suite. Astrobiology. 2020.

  69. Karras JT, Fuller CL, Carpenter KC, Buscicchio A, McKeeby D, Norman CJ, et al. 2017 IEEE International Confer- ence on Robotics and Automation (ICRA): IEEE; 2017. p. 5459–66.

  70. Karras JT, Fuller C, Carpenter KC, Buscicchio A, Parcheta CE. Puffer: pop-up flat folding explorer robot. US Patent App. 2017; 15/272,239.

  71. Parness A, McKenzie C. Drop: the durable reconnaissance and observation platform. Industrial Robot: An International Journal. 2013.

  72. Davydychev IA, Karras JT, Carpenter KC. Design of a two-wheeled rover with sprawl ability and metal brush traction. Journal of Mechanisms and Robotics. 2019;11(3).

  73. Carpenter K, Wiltsie N, Parness A. Rotary microspine rough surface mobility. IEEE/ASME Transactions on Mechatronics. 2015;21(5):2378.

    Article  Google Scholar 

  74. Grip HF, Johnson W, Malpica C, Scharf DP, Mandíc M, Young L, et al. Modeling and identification of hover flight dynamics for nasa’s mars helicopter. J Guid Control Dyn. 2020;43(2):179.

  75. Grip HF, Lam J, Bayard DS, Conway DT, Singh G, Brockers R, et al. Flight control system for NASA’s Mars helicopter. In: AIAA Scitech 2019 Forum; 2019. p. 1289.

  76. Grip HF, Scharf DP, Malpica C, Johnson W, Mandic M, Singh G, et al. Guidance and control for a Mars helicopter. In: 2018 AIAA Guid- ance, Navigation, and Control Conference; 2018. p. 1849.

    Google Scholar 

  77. Koning WJ, Johnson W, Grip HF. Improved mars helicopter aerodynamic rotor model for comprehensive analyses. AIAA J. 2019;57(9):3969.

    Article  Google Scholar 

  78. Pipenberg BT, Keennon M, Tyler J, Hibbs B, Langberg S, Balaram J, et al. Design and fabrication of the mars helicopter rotor, airframe, and landing gear systems. In: AIAA Scitech 2019 Forum; 2019. p. 0620.

    Google Scholar 

  79. Balaram B, Canham T, Duncan C, Grip HF, Johnson W, Maki J, et al. Mars helicopter technology demonstrator. In: 2018 AIAA Atmospheric Flight Mechanics Conference; 2018. p. 0023.

    Google Scholar 

  80. R.D. Lorenz, E.P. Turtle, J.W. Barnes, M.G. Trainer, D.S. Adams, K.E. Hibbard, C.Z. Sheldon, K. Zacny, P.N. Peplowski, D.J. Lawrence, et al., Dragonfly: a rotorcraft lander concept for scientific exploration at titan, Johns Hopkins APL Technical Digest 34(3), 14 (2018)

    Google Scholar 

  81. • Hockman BJ, Frick A, Reid RG, Nesnas IA, Pavone M. Design, control, and experimentation of internally-actuated rovers for the exploration of low-gravity planetary bodies. Journal of Field Robotics. 2017;34(1):5 The proposed design is put through a variety of unique and informative tests for low-gravity tumblers and hoppers. The technology level is developed and provides insight to what the next generation of low-gravity explorers may look like.

    Article  Google Scholar 

  82. Mars Helicopter Ingenuity. https://en.wikipedia.org/wiki/Mars_Helicopter_Ingenuity (2020). [Online; ac- cessed 11-November-2020]

  83. PUFFER. https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA23793. (2020). [Online; accessed 11- November-2020]

  84. Dragonfly. https://en.wikipedia.org/wiki/Dragonfly_(spacecraft) (2017). [Online; accessed 11-November-2020]

  85. Boehnhardt H, Bibring JP, Apathy I, Auster HU, Ercoli Finzi A, Goesmann F, et al. The Philae lander mission and science overview. Philos Trans R Soc A Math Phys Eng Sci. 2017;375(2097):20160248.

    Article  Google Scholar 

  86. Tsuda Y, Yoshikawa M, Abe M, Minamino H. Nakazawa, System design of the hayabusa 2—asteroid sample return mission to 1999 ju3. Acta Astronautica. 2013;91:356–62.

    Article  Google Scholar 

  87. Watanabe SI, Tsuda Y, Yoshikawa M, Tanaka S, Saiki SN. Hayabusa2 mission overview. Space Sci Rev. 2017;208(1-4):3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Marvi.

Ethics declarations

Conflict of Interest

Andrew Thoesen and Hamid Marvi have a patent pending (systems and methods for a multi-modal screw-propelled excavation; 17/105,011).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Space Robotics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thoesen, A., Marvi, H. Planetary Surface Mobility and Exploration: A Review. Curr Robot Rep 2, 239–249 (2021). https://doi.org/10.1007/s43154-021-00056-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43154-021-00056-3

Keywords

Navigation