Skip to main content

Advertisement

Log in

Novel polyethylene glycol/nanosilica-reinforced polyurethane mixed matrix nanocomposite membrane with enhanced gas separation properties

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this study, the effect of nanosilica (SiO2) reinforcement on the gas separation properties of polyurethane/polyethylene glycol (PU-PEG) nanocomposite membrane was investigated. Formulation optimization of PU-PEG-SiO2 triple nanocomposite membrane was performed using experimental design and the Taguchi method. The effects of different formulation variables including nanosilica content, PEG content and molecular weight on the permeability and selectivity of CO2, N2, O2 and CH4 gases were investigated. The morphological and structural properties of the membranes were investigated by SEM, XRD, and FTIR analysis. Finally, the selectivity of optimal nanosilica-reinforced membrane was evaluated by Robeson's upper bound diagram. The obtained results showed that increasing the PEG content improves the gas permeability of the membrane due to its plasticizing effect. However, PEG plasticizing effect decreased at higher molecular weights and resulted in permeability reduction. By increasing the nanosilica content, the permeability of all the gasses reduced but the selectivity of the membrane for CO2 over CH4 and N2 improved. Finally, PU-20% PEG6000-5% SiO2 formulation which had the best selectivity for CO2/CH4 gases and was closer to Robeson’s upper bound line was chosen as the optimal composition. In conclusion, PEG/nanosilica-reinforced Polyurethane nanocomposite membrane could serve as a promising candidate for efficient gas separation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abbasi E et al (2017) Optimizing durability of the high performance nano-concrete applying taguchi method and desirability function. In: Proceedings of the International Conference on Industrial Engineering and Operations Management, Rabat, Morocco

  • Abdolmaleki M et al (2016) Blend membranes based on polyurethane and polyethylene glycol: exploring the impact of molecular weight and concentration of the second phase on gas permeation enhancement. J Polym Eng 36(5):513–519

    Article  CAS  Google Scholar 

  • Alkilany AM, Bani Yaseen AI, Kailani MH (2015) Synthesis of monodispersed gold nanoparticles with exceptional colloidal stability with grafted polyethylene glycol-g-polyvinyl alcohol. J Nanomater. https://doi.org/10.1155/2015/712359

    Article  Google Scholar 

  • Asghari M et al (2017) Molecular simulation and experimental investigation of temperature effect on chitosan-nanosilica supported mixed matrix membranes for dehydration of ethanol via pervaporation. J Mol Liq 246:7–16

    Article  CAS  Google Scholar 

  • Bet-Moushoul E et al (2016) TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes. Chem Eng J 283:29–46

    Article  CAS  Google Scholar 

  • Chen XY et al (2014) Effect of macrovoids in nano-silica/polyimide mixed matrix membranes for high flux CO 2/CH 4 gas separation. RSC Adv 4(24):12235–12244

    Article  CAS  Google Scholar 

  • De Sales J et al (2008) Systematic investigation of the effects of temperature and pressure on gas transport through polyurethane/poly (methylmethacrylate) phase-separated blends. J Membr Sci 310(1–2):129–140

    Article  Google Scholar 

  • Duke MC et al (2006) Hydrothermally robust molecular sieve silica for wet gas separation. Adv Funct Mater 16(9):1215–1220

    Article  CAS  Google Scholar 

  • Fan W et al (2015) Abrasion resistance of waterborne polyurethane films incorporated with PU/silica hybrids. Prog Org Coat 86:125–133

    Article  CAS  Google Scholar 

  • Farahani A et al (2021) Polylactic acid piezo-biopolymers: chemistry, structural evolution, fabrication methods, and tissue engineering applications. J Funct Biomater 12(4):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdosi SB (2022) Thermal effect on the post-buckling and mechanical response of single-walled carbon nanotubes: a numerical investigation. Mech Eng 9:1–6

    Google Scholar 

  • Foroughi AH, Razavi MJ (2022a) Multi-objective shape optimization of bone scaffolds: enhancement of mechanical properties and permeability. Acta Biomater 146:317–340

    Article  CAS  PubMed  Google Scholar 

  • Foroughi AH, Razavi MJ (2022b) Shape optimization of orthopedic porous scaffolds to enhance mechanical performance. J Mech Behav Biomed Mater 128:105098

    Article  CAS  PubMed  Google Scholar 

  • Goodarzi V et al (2013) Assessment of role of morphology in gas permselectivity of membranes based on polypropylene/ethylene vinyl acetate/clay nanocomposite. J Membr Sci 445:76–87

    Article  CAS  Google Scholar 

  • Han Y et al (2015) Improved water resistance, thermal stability, and mechanical properties of waterborne polyurethane nanohybrids reinforced by fumed silica via in situ polymerization. High Perform Polym 27(7):824–832

    Article  CAS  Google Scholar 

  • https://www.us-nano.com/inc/sdetail/374.

  • Isanejad M, Mohammadi T (2018) Effect of amine modification on morphology and performance of poly (ether-block-amide)/fumed silica nanocomposite membranes for CO2/CH4 separation. Mater Chem Phys 205:303–314

    Article  CAS  Google Scholar 

  • Isfahani AP et al (2016a) Enhancement of the gas separation properties of polyurethane membrane by epoxy nanoparticles. J Ind Eng Chem 44:67–72

    Article  CAS  Google Scholar 

  • Isfahani AP et al (2016b) Polyurethane gas separation membranes with ethereal bonds in the hard segments. J Membr Sci 513:58–66

    Article  CAS  Google Scholar 

  • Jahromi AE et al (2013) Taguchi-based analysis of polyamide 6/acrylonitrile–butadiene rubber/nanoclay nanocomposites: The role of processing variables. J Appl Polym Sci 130(2):820–828

    Article  CAS  Google Scholar 

  • Jazani OM et al (2010) Evaluation of mechanical properties of polypropylene/polycarbonate/SEBS ternary polymer blends using Taguchi experimental analysis. J Appl Polym Sci 116(4):2312–2319

    CAS  Google Scholar 

  • Jiang H et al (2007) Alkoxysilane functionalized polyurethane/polysiloxane copolymers: Synthesis and the effect of end-capping agent. Polym Bull 59:53–63

    Article  CAS  Google Scholar 

  • Kalantari S et al (2020) Superior interfacial design in ternary mixed matrix membranes to enhance the CO2 separation performance. Appl Mater Today 18:100491

    Article  Google Scholar 

  • Karna SK, Sahai R (2012) An overview on Taguchi method. Int J Eng Math Sci 1(1):1–7

    Google Scholar 

  • Kim S, Lee Y (2015) Progr Polym Sci 43:1–32

    Article  CAS  Google Scholar 

  • Lee SI et al (2005) Synthesis of polyether-based polyurethane-silica nanocomposites with high elongation property. Polym Adv Technol 16(4):328–331

    Article  CAS  Google Scholar 

  • Li H et al (2015) Inorganic microporous membranes for H2 and CO2 separation—Review of experimental and modeling progress. Chem Eng Sci 127:401–417

    Article  CAS  Google Scholar 

  • Mondal A, Mandal B (2014) CO2 separation using thermally stable crosslinked poly (vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. J Membr Sci 460:126–138

    Article  CAS  Google Scholar 

  • Moradi H, Beh-Aein R, Youssef G (2021) Multi-objective design optimization of dental implant geometrical parameters. Int J Numer Methods Biomed Eng 37(9):e3511

    Article  Google Scholar 

  • Mozaffari V et al (2017) Gas separation properties of polyurethane/poly (ether-block-amide)(PU/PEBA) blend membranes. Sep Purif Technol 185:202–214

    Article  CAS  Google Scholar 

  • Murali RS et al (2014) Nanosilica and H-mordenite incorporated poly (ether-block-amide)-1657 membranes for gaseous separations. Microporous Mesoporous Mater 197:291–298

    Article  Google Scholar 

  • Noorbakhsh M, Moradi HR (2020) Design and optimization of multi-stage manufacturing process of stirling engine crankshaft. SN Appl Sci 2:1–14

    Article  Google Scholar 

  • Panapitiya NP et al (2015) Gas separation membranes derived from high-performance immiscible polymer blends compatibilized with small molecules. ACS Appl Mater Interfaces 7(33):18618–18627

    Article  CAS  PubMed  Google Scholar 

  • Patricio P et al (2006) Effect of blend composition on microstructure, morphology, and gas permeability in PU/PMMA blends. J Membr Sci 271(1–2):177–185

    Article  CAS  Google Scholar 

  • Paul M, Jons SD (2016) Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer 103:417–456

    Article  CAS  Google Scholar 

  • Peruzzo PJ et al (2016) On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties. Mater Today Commun 6:81–91

    Article  CAS  Google Scholar 

  • Pirouzfar V et al (2014) Investigating the effect of dianhydride type and pyrolysis condition on the gas separation performance of membranes derived from blended polyimides through statistical analysis. J Ind Eng Chem 20(3):1061–1070

    Article  CAS  Google Scholar 

  • Porbashiri M, Ferdosi SB (2023) Calculation of the single-walled carbon nanotubes’ elastic modulus by using the asymptotic homogenization method. Equilibrium 2(2):3

    Google Scholar 

  • Rafiq S et al (2012) Separation of CO2 from CH4 using polysulfone/polyimide silica nanocomposite membranes. Sep Purif Technol 90:162–172

    Article  CAS  Google Scholar 

  • Robeson LM (2008) The upper bound revisited. J Membr Sci 320(1–2):390–400

    Article  CAS  Google Scholar 

  • Sadeghi M et al (2010) The effect of urethane and urea content on the gas permeation properties of poly (urethane-urea) membranes. J Membr Sci 354(1–2):40–47

    Article  CAS  Google Scholar 

  • Sadeghi M et al (2011) Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes. J Membr Sci 376(1–2):188–195

    Article  CAS  Google Scholar 

  • Sadeghi M et al (2013) Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane-silica nanocomposite membrane. J Membr Sci 427:21–29

    Article  CAS  Google Scholar 

  • Saedi S et al (2014) The effect of polyurethane on the structure and performance of PES membrane for separation of carbon dioxide from methane. J Ind Eng Chem 20(4):1916–1929

    Article  CAS  Google Scholar 

  • Shahid S, Nijmeijer K (2017) Matrimid®/polysulfone blend mixed matrix membranes containing ZIF-8 nanoparticles for high pressure stability in natural gas separation. Sep Purif Technol 189:90–100

    Article  CAS  Google Scholar 

  • Shirvani H et al (2018) Polyurethane/poly (vinyl alcohol) blend membranes for gas separation. Fibers Polym 19:1119–1127

    Article  CAS  Google Scholar 

  • Swain S et al (2013) Effects of nano-silica/nano-alumina on mechanical and physical properties of polyurethane composites and coatings. Trans Electr Electron Mater 14(1):1–8

    Article  Google Scholar 

  • Talakesh MM et al (2012) Gas separation properties of poly (ethylene glycol)/poly (tetramethylene glycol) based polyurethane membranes. J Membr Sci 415:469–477

    Article  Google Scholar 

  • Tamiji T, Ameri E (2017) Preparation, characterization, and gas permeation properties of blend membranes of polysulfone and polyethylene glycol inclusive alumina nanoparticles. Int J Environ Sci Technol 14:1235–1242

    Article  CAS  Google Scholar 

  • Wang H et al (2012) Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering. Mater Sci Eng, C 32(8):2306–2315

    Article  CAS  Google Scholar 

  • Xing R, Ho WW (2009) Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation. J Taiwan Inst Chem Eng 40(6):654–662

    Article  CAS  Google Scholar 

  • Yong WF et al (2016) Blends of a polymer of intrinsic microporosity and partially sulfonated polyphenylenesulfone for gas separation. Chemsuschem 9(15):1953–1962

    Article  CAS  PubMed  Google Scholar 

  • Zhang J et al (2017) Membrane-based gas separation accelerated by hollow nanosphere architectures. Adv Mater 29(4):1603797

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Mehradnia.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolmaleki, M., Moini Jazani, O., Moradi, H. et al. Novel polyethylene glycol/nanosilica-reinforced polyurethane mixed matrix nanocomposite membrane with enhanced gas separation properties. Braz. J. Chem. Eng. (2023). https://doi.org/10.1007/s43153-023-00407-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43153-023-00407-x

Keywords

Navigation