Skip to main content
Log in

Assessment of module arrangements of a direct contact membrane distillation process for a small-scale desalination plant

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Direct contact membrane distillation (DCMD) is the most studied configuration for desalination and waste treatment, due to its ease of operation. Despite this, this technology has not been scaled for industrial use mainly because of its energy requirements. In this work, a mathematical model is presented in which the free surface approach is used to simulate a tube-and-shell module. The model was successfully validated with experimental data from the literature. The operational parameters were evaluated to determine its influence on the permeate flux. The recycling of concentrate as a strategy to increase water recovery was also studied. In addition, high recycling rates allowed to reduce the specific energy consumption (SEC) and achieve a higher water recovery (REC). Finally, aiming at the use of membrane distillation for desalination in a small-scale plant, various arrangements of modules were evaluated in terms of water recovery, final concentration reached and SEC. The Christmas Tree arrangement turned out to be the most efficient one using a smaller area of membranes allowing to achieve a high degree of water recovery (86.5%), a final concentration of 260 \(\mathrm{kg}/{\mathrm{m}}^{3}\) with a SEC of 1003 \(\mathrm{kWh}/{\mathrm{m}}^{3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. The orthogonal collocation method as presented here is based on the family of the Jacobi polynomials given as \({P}_{n}^{\left(\alpha , \beta \right)}(x)\). Here, the parameters \(\alpha\) and \(\beta\) define the weight function associated with this family: \(w\left(x\right)={x}^{\beta }{\left(1-x\right)}^{\alpha }\) (Secchi et al. 1999).

Abbreviations

AGMD:

Air gap membrane distillation

CPC:

Concentration polarization coefficient

DCMD:

Direct contact membrane distillation

MD:

Membrane distillation

REC:

Water recovery

RO:

Reverse osmosis

RR:

Recycle ratio

SEC:

Specific energy consumption

SGMD:

Sweep gas membrane distillation

TPC:

Temperature polarization coefficient

VMD:

Vacuum membrane distillation

\(B\) :

Membrane permeability

\({C}_{p}\) :

Heat capacity

c:

Mass concentration

C:

Molar concentration

\({\mathcal{D}}_{ij}\) :

Diffusivity

L:

Length

\(\dot{m}\) :

Mass flow

M:

Molecular weight

N:

Permeate flux

P:

Pressure

\(q\) :

Flow rate

r:

Radial coordinate

r:

Radius

R:

Universal gas constant

Re:

Reynolds number

T:

Temperature

\(v\) :

Velocity

x:

Liquid molar fraction

Y:

Air molar fraction

y:

Vapor molar fraction

z:

Axial coordinate

\(\Delta {H}_{v}\) :

Vaporization enthalpy

\(\delta\) :

Thickness

\(\kappa\) :

Thermal conductivity

\(\rho\) :

Density

\(\tau\) :

Membrane tortuosity

\(\epsilon\) :

Membrane porosity

\(\fancyscript{a}\) :

Lumen side

A:

Volatile component

B:

Non-volatile component

\(\fancyscript{b}\) :

Shell side

f:

Feed

fs:

Free surface

in:

Entry

l:

Internal

ln:

Logarithmic

p:

Permeate

P:

Pore

r:

Radial

s:

External

w:

Water

z:

Axial

b:

Bulk

c:

Concentration

m:

Membrane

sat:

Saturation

t:

Thermal

References

  • Abdel-Rahman A (2008) Modeling temperature and salt concentration distribution in direct contact membrane distillation. J Eng Sci Assiut Univ 36(5):1167–1188

    Google Scholar 

  • Abu-Zeid MAE-R, Zhang Y, Dong H, Zhang L, Chen H-L, Hou L (2015) A comprehensive review of vacuum membrane distillation technique. Desalination 356:1–14

    Article  CAS  Google Scholar 

  • Ali A, Quist-Jensen CA, Macedonio F, Drioli E (2016) Optimization of module length for continuous direct contact membrane distillation process. Chem Eng Process Process Intensif 110:188–200. https://doi.org/10.1016/j.cep.2016.10.014

    Article  CAS  Google Scholar 

  • Ali A, Criscuoli A, Macedonio F, Argurio P, Figoli A, Drioli E (2018a) Direct contact membrane distillation for the treatment of wastewater for a cooling tower in the power industry. H2Open J 1(1):57–68

    Article  Google Scholar 

  • Ali A, Tsai JH, Tung KL, Drioli E, Macedonio F (2018b) Designing and optimization of continuous direct contact membrane distillation process. Desalination 426:97–107. https://doi.org/10.1016/j.desal.2017.10.041

    Article  CAS  Google Scholar 

  • Ali A, Criscuoli A, Macedonio F, Drioli E (2019) A comparative analysis of flat sheet and capillary membranes for membrane distillation applications. Desalination 456:1–12. https://doi.org/10.1016/j.desal.2019.01.006

    Article  CAS  Google Scholar 

  • Ali E, Hadj-Kali M, Orfi J (2020) Understanding and enhancing the direct contact membrane distillation performance by modified heat transfer correlation. Can J Chem Eng 98:1–19

    Article  CAS  Google Scholar 

  • Alkhudhiri A, Darwish N, Hilal N (2012) Membrane distillation: a comprehensive review. Desalination 287:2–18. https://doi.org/10.1016/j.desal.2011.08.027

    Article  CAS  Google Scholar 

  • Alkhudhiri A, Darwish N, Hilal N (2013) Produced water treatment: application of air gap membrane distillation. Desalination 309:46–51. https://doi.org/10.1016/j.desal.2012.09.017

    Article  CAS  Google Scholar 

  • Al-Obaidani S, Curcio E, Macedonio F, Di Profio G, Al-Hinai H, Drioli E (2008) Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. J Membr Sci 323(1):85–98

    Article  CAS  Google Scholar 

  • Alvares CMS, Grossi LB, Ramos RL, Magela CS, Amaral MCS (2019) Bi-dimensional modelling of the thermal boundary layer and mass flux prediction for direct contact membrane distillation. Int J Heat Mass Transf 141:1205–1215

    Article  CAS  Google Scholar 

  • Ashoor BB, Mansour S, Giwa A, Dufour V, Hasan SW (2016) Principles and applications of direct contact membrane distillation (DCMD): a comprehensive review. Desalination 398:222–246

    Article  CAS  Google Scholar 

  • Bhattacharya M, Dutta SK, Sikder J, Mandal MK (2014) Computational and experimental study of chromium (VI) removal in direct contact membrane distillation. J Membr Sci 450:447–456. https://doi.org/10.1016/j.memsci.2013.09.037

    Article  CAS  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena. 2nd edn. Wiley, New York

  • Boubakri A, Hafiane A, Bouguecha SAT (2014) Direct contact membrane distillation: capability to desalt raw water. Arab J Chem 4:557–563

    Google Scholar 

  • Boubakri A, Bouguecha SA-T, Dhaouadi I, Hafiane A (2015) Effect of operating parameters on boron removal from seawater using membrane distillation process. Desalination 373:86–93

    Article  CAS  Google Scholar 

  • Boucif N, Nguyen PT, Roizard D, Favre E (2010) Theoretical studies on carbon dioxide removal from a gas stream in hollow fiber membrane contactors. Desalin Water Treat 14(1–3):146–157

    Article  CAS  Google Scholar 

  • Cath TY, Adams VD, Childress AE (2004) Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement. J Membr Sci 228(1):5–16

    Article  CAS  Google Scholar 

  • Chen G, Lu Y, Krantz WB, Wang R, Fane AG (2014) Optimization of operating conditions for a continuous membrane distillation crystallization process with zero salty water discharge. J Membr Sci 450:1–11. https://doi.org/10.1016/j.memsci.2013.08.034

    Article  CAS  Google Scholar 

  • Chiam C-K, Sarbatly R (2014) Vacuum membrane distillation processes for aqueous solution treatment—a review. Chem Eng Process Process Intensif 74:27–54. https://doi.org/10.1016/j.cep.2013.10.002

    Article  CAS  Google Scholar 

  • Choudhury MR, Anwar N, Jassby D, Rahaman MS (2019) Fouling and wetting in the membrane distillation driven wastewater reclamation process—a review. Adv Colloid Interface Sci 269:370–399. https://doi.org/10.1016/j.cis.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  • de Soares RP, Secchi AR (2003) EMSO: a new environment for modelling, simulation and optimisation. Comput Aided Chem Eng 14:947–952

    Article  Google Scholar 

  • Ding Z, Ma R, Fane AG (2002) A new model for mass transfer in direct contact membrane distillation. Desalination 151(3):217–227

    Article  Google Scholar 

  • Dong G, Cha-Umpong W, Hou J, Ji C, Chen V (2019) Open-source industrial-scale module simulation: paving the way towards the right configuration choice for membrane distillation. Desalination 464:48–62. https://doi.org/10.1016/j.desal.2019.04.018

    Article  CAS  Google Scholar 

  • Duong HC, Cooper P, Nelemans B, Cath TY, Nghiem LD (2015) Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination. Desalination 374:1–9

    Article  CAS  Google Scholar 

  • Duong HC, Cooper P, Nelemans B, Cath TY, Nghiem LD (2016) Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level. Sep Purif Technol 166:55–62. https://doi.org/10.1016/j.seppur.2016.04.014

    Article  CAS  Google Scholar 

  • Ebrahim MA, Karan S, Livingston AG (2020) On the influence of salt concentration on the transport properties of reverse osmosis membranes in high pressure and high recovery desalination. J Membr Sci 594:117339

    Article  Google Scholar 

  • El-Bourawi MS, Ding Z, Ma R, Khayet M (2006) A framework for better understanding membrane distillation separation process. J Membr Sci 285(1–2):4–29

    Article  CAS  Google Scholar 

  • Elzahaby AM, Kabeel AE, Bassuoni MM, Elbar ARA (2016) Direct contact membrane water distillation assisted with solar energy. Energy Convers Manag 110:397–406. https://doi.org/10.1016/j.enconman.2015.12.046

    Article  CAS  Google Scholar 

  • Esfandiari A, Hosseini Monjezi A, Rezakazemi M, Younas M (2019) Computational fluid dynamic modeling of water desalination using low-energy continuous direct contact membrane distillation process. Appl Therm Eng 163:114391. https://doi.org/10.1016/j.applthermaleng.2019.114391

    Article  Google Scholar 

  • Fan H, Peng Y (2012) Application of PVDF membranes in desalination and comparison of the VMD and DCMD processes. Chem Eng Sci 79:94–102. https://doi.org/10.1016/j.ces.2012.05.052

    Article  CAS  Google Scholar 

  • Fard AK, Manawi YM, Rhadfi T, Mahmoud KA, Khraisheh M, Benyahia F (2015) Synoptic analysis of direct contact membrane distillation performance in Qatar: a case study. Desalination 360:97–107

    Article  Google Scholar 

  • Gill WN, Bansal B (1973) Hollow fiber reverse osmosis systems analysis and design. AIChE J 19(4):823–831

    Article  CAS  Google Scholar 

  • Gopi G, Arthanareeswaran G, Ismail AF (2019) Perspective of renewable desalination by using membrane distillation. Chem Eng Res Des 144:520–537. https://doi.org/10.1016/j.cherd.2019.02.036

    Article  CAS  Google Scholar 

  • Goyal N, Suman S, Gupta SK (2015) Mathematical modeling of CO2 separation from gaseous-mixture using a hollow-fiber membrane module: physical mechanism and in fluence of partial-wetting. J Membr Sci 474:64–82. https://doi.org/10.1016/j.memsci.2014.09.036

    Article  CAS  Google Scholar 

  • Gryta M (2012) Effectiveness of water desalination by membrane distillation process. Membranes (basel) 2(3):415–429

    Article  CAS  Google Scholar 

  • Guan G, Wang R, Wicaksana F, Yang X, Fane AG (2012) Analysis of membrane distillation crystallization system for high salinity brine treatment with zero discharge using Aspen flowsheet simulation. Ind Eng Chem Res 51(41):13405–13413

    Article  CAS  Google Scholar 

  • Hayer H, Bakhtiari O, Mohammadi T (2015) Simulation of momentum, heat and mass transfer in direct contact membrane distillation: a computational fluid dynamics approach. J Ind Eng Chem 21:1379–1382. https://doi.org/10.1016/j.jiec.2014.06.009

    Article  CAS  Google Scholar 

  • Hitsov I, Maere T, De Sitter K, Dotremont C, Nopens I (2015) Modelling approaches in membrane distillation: a critical review. Sep Purif Technol 142:48–64

    Article  CAS  Google Scholar 

  • Khalifa A, Lawal D, Antar M, Khayet M (2015) Experimental and theoretical investigation on water desalination using air gap membrane distillation. Desalination 376:94–108

    Article  CAS  Google Scholar 

  • Khalifa A, Ahmad H, Antar M, Laoui T, Khayet M (2017a) Experimental and theoretical investigations on water desalination using direct contact membrane distillation. Desalination 404:22–34. https://doi.org/10.1016/j.desal.2016.10.009

    Article  CAS  Google Scholar 

  • Khalifa AE, Alawad SM, Antar MA (2017b) Parallel and series multistage air gap membrane distillation. Desalination 417:69–76. https://doi.org/10.1016/j.desal.2017.05.003

    Article  CAS  Google Scholar 

  • Khayet M (2011) Membranes and theoretical modeling of membrane distillation: a review. Adv Colloid Interface Sci 164(1–2):56–88

    Article  CAS  Google Scholar 

  • Khayet M, Cojocaru C, Baroudi A (2012) Modeling and optimization of sweeping gas membrane distillation. Desalination 287:159–166. https://doi.org/10.1016/j.desal.2011.04.070

    Article  CAS  Google Scholar 

  • Kiss AA, Readi OMK (2018) An industrial perspective on membrane distillation processes. J Chem Technol Biotechnol 93(8):2047–2055

    Article  CAS  Google Scholar 

  • Laqbaqbi M, García-Payo MC, Khayet M, El Kharraz J, Chaouch M (2019) Application of direct contact membrane distillation for textile wastewater treatment and fouling study. Sep Purif Technol 209:815–825. https://doi.org/10.1016/j.seppur.2018.09.031

    Article  CAS  Google Scholar 

  • Lawson KW, Lloyd DR (1997) Membrane distillation. J Membr Sci 124(1):1–25

    Article  CAS  Google Scholar 

  • Lee J-G, Kim W-S (2013) Numerical modeling of the vacuum membrane distillation process. Desalination 331:46–55

    Article  CAS  Google Scholar 

  • Lokare OR, Tavakkoli S, Khanna V, Vidic RD (2018) Importance of feed recirculation for the overall energy consumption in membrane distillation systems. Desalination 428:250–254. https://doi.org/10.1016/j.desal.2017.11.037

    Article  CAS  Google Scholar 

  • Lou J, Vanneste J, DeCaluwe SC, Cath TY, Tilton N (2019) Computational fluid dynamics simulations of polarization phenomena in direct contact membrane distillation. J Membr Sci 591:117150. https://doi.org/10.1016/j.memsci.2019.05.074

    Article  CAS  Google Scholar 

  • Lu KJ, Cheng ZL, Chang J, Luo L, Chung TS (2019) Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies. Desalination 458:66–75. https://doi.org/10.1016/j.desal.2019.02.001

    Article  CAS  Google Scholar 

  • Martínez-Dı́ez L, Vázquez-González M (1999) Temperature and concentration polarization in membrane distillation of aqueous salt solutions. J Membr Sci 156(2):265–273

    Article  Google Scholar 

  • Pantoja CE, Nariyoshi YN, Seckler MM (2015) Membrane distillation crystallization applied to brine desalination: a hierarchical design procedure. Ind Eng Chem Res 54(10):2776–2793

    Article  CAS  Google Scholar 

  • Perfilov V, Ali A, Fila V (2018) A general predictive model for direct contact membrane distillation. Desalination 445:181–196

    Article  CAS  Google Scholar 

  • Phattaranawik J, Jiraratananon R, Fane AG (2003a) Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation. J Membr Sci 215(1–2):75–85

    Article  CAS  Google Scholar 

  • Phattaranawik J, Jiraratananon R, Fane AG (2003b) Heat transport and membrane distillation coefficients in direct contact membrane distillation. J Membr Sci 212(1–2):177–193

    Article  CAS  Google Scholar 

  • Qtaishat M, Matsuura T, Kruczek B, Khayet M (2008) Heat and mass transfer analysis in direct contact membrane distillation. Desalination 219(1–3):272–292

    Article  CAS  Google Scholar 

  • Rezakazemi M (2018) CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system. Desalination 443:323–332. https://doi.org/10.1016/j.desal.2017.12.048

    Article  CAS  Google Scholar 

  • Salem MS, El-Shazly AH, Nady N, Elmarghany MR, Shouman MA, Sabry MN (2019) 3-D numerical investigation on commercial PTFE membranes for membrane distillation: effect of inlet conditions on heat and mass transfer. Case Stud Therm Eng 13:100396. https://doi.org/10.1016/j.csite.2019.100396

    Article  Google Scholar 

  • Schofield RW, Fane AG, Fell CJD (1987) Heat and mass transfer in membrane distillation. J Membr Sci 33(3):299–313

    Article  CAS  Google Scholar 

  • Schofield RW, Fane AG, Fell CJD, Macoun R (1990) Factors affecting flux in membrane distillation. Desalination 77:279–294

    Article  CAS  Google Scholar 

  • Schwantes R, Cipollina A, Gross F, Koschikowski J, Pfeifle D, Rolletschek M et al (2013) Membrane distillation: solar and waste heat driven demonstration plants for desalination. Desalination 323:93–106

    Article  CAS  Google Scholar 

  • Secchi AR, Wada K, Tessaro IC (1999) Simulation of an ultrafiltration process of bovine serum albumin in hollow-fiber membranes. J Membr Sci 160(2):255–265

    Article  CAS  Google Scholar 

  • Shokrollahi M, Rezakazemi M, Younas M (2020) Producing water from saline streams using membrane distillation: modeling and optimization using CFD and design expert. Int J Energy Res 44(11):8841–8853

    Article  CAS  Google Scholar 

  • Srisurichan S, Jiraratananon R, Fane AG (2006) Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. J Membr Sci 277(1–2):186–194

    Article  CAS  Google Scholar 

  • Susanto H (2011) Towards practical implementations of membrane distillation. Chem Eng Process Process Intensif 50(2):139–150. https://doi.org/10.1016/j.cep.2010.12.008

    Article  CAS  Google Scholar 

  • Tun CM, Fane AG, Matheickal JT, Sheikholeslami R (2005) Membrane distillation crystallization of concentrated salts—flux and crystal formation. J Membr Sci 257(1–2):144–155

    Article  CAS  Google Scholar 

  • Zaragoza G, Ruiz-Aguirre A, Guillén-Burrieza E (2014) Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production. Appl Energy 130:491–499. https://doi.org/10.1016/j.apenergy.2014.02.024

    Article  Google Scholar 

  • Zhang L-Z, Huang S-M, Chi J-H, Pei L-X (2012) Conjugate heat and mass transfer in a hollow fiber membrane module for liquid desiccant air dehumidification: a free surface model approach. Int J Heat Mass Transf 55(13–14):3789–3799

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). The authors thank Professor Argimiro Secchi for his help in using EMSO software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omayra B. Ferreiro.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 160 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreiro, O.B., Kronemberger, F.A. & Borges, C.P. Assessment of module arrangements of a direct contact membrane distillation process for a small-scale desalination plant. Braz. J. Chem. Eng. 39, 773–787 (2022). https://doi.org/10.1007/s43153-021-00171-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-021-00171-w

Keywords

Navigation