Skip to main content

Advertisement

Log in

Emerging Roles of Pericytes in Coordinating Skeletal Muscle Functions: Implications and Therapeutic Potential

  • Pericytes (A Birbrair, Section Editor)
  • Published:
Current Tissue Microenvironment Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Capillaries are composed of endothelial cells that are partially wrapped by a mural cell known as a pericyte. There is growing interest in the functional roles of pericytes within the skeletal muscle microcirculation and how they might ultimately influence skeletal muscle functions.

Recent Findings

Generally, pericytes are thought to stabilize the capillary structure, modify endothelial cell functions, and participate in the process of new capillary formation, angiogenesis. Based on their structural organization and phenotypic behaviors, pericytes are postulated to perform a broad set of roles within the skeletal muscle that may include coordinating tissue homeostasis in healthy muscle and during the regeneration processes in damaged muscle. These functions indicate potential therapeutic opportunities targeting or utilizing pericytes to improve muscle health under pathophysiological conditions such as diabetes or muscle ischemia.

Summary

This review will discuss the current knowledge of skeletal muscle pericyte phenotype and function and the evidence supporting the influence of pericytes in skeletal muscle health under physiological and pathological states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985;76:149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol. 1919;52:409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Romanul FC. Capillary supply and metabolism of muscle fibers. Arch Neurol. 1965;12:497–509.

    Article  CAS  PubMed  Google Scholar 

  4. Gray SD, Renkin EM. Microvascular supply in relation to fiber metabolic type in mixed skeletal muscles on rabbits. Microvasc Res. 1978;16:406–25.

    Article  CAS  PubMed  Google Scholar 

  5. Bruns RR, Palade GE. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol. 1968;37:244–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Poole DC, Copp SW, Ferguson SK, Musch TI. Skeletal muscle capillary function: contemporary observations and novel hypotheses. Exp Physiol. 2013;98:1645–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haas TL, Nwadozi E. Regulation of skeletal muscle capillary growth in exercise and disease. Appl Physiol Nutr Metab. 2015;40:1221–32.

    Article  PubMed  Google Scholar 

  8. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97:512–23.

    Article  CAS  PubMed  Google Scholar 

  9. Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215.

    Article  CAS  PubMed  Google Scholar 

  10. Díaz-Flores L, Gutiérrez R, Madrid JF, Varela H, Valladares F, Acosta E, et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol. 2009;24:909–69.

    PubMed  Google Scholar 

  11. Lindahl P, Johansson BR, Levéen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277:242–5.

    Article  CAS  PubMed  Google Scholar 

  12. Courtoy PJ, Boyles J. Fibronectin in the microvasculature: localization in the pericyte-endothelial interstitium. J Ultrastruct Res. 1983;83:258–73.

    Article  CAS  PubMed  Google Scholar 

  13. Iendaltseva O, Orlova VV, Mummery CL, Danen EHJ, Schmidt T. Fibronectin patches as anchoring points for force sensing and transmission in human induced pluripotent stem cell-derived pericytes. Stem Cell Reports. 2020;14:1107–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tilton RG, Kilo C, Williamson JR. Pericyte-endothelial relationships in cardiac and skeletal muscle capillaries. Microvascular Research. Elsevier Science. 1979;18:325–35.

    Article  CAS  Google Scholar 

  15. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O’Connor DS, Li F, et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem. 2000;275:9102–5.

    Article  CAS  PubMed  Google Scholar 

  16. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med. 2000;6:460–3.

    Article  CAS  PubMed  Google Scholar 

  17. Wakui S, Yokoo K, Muto T, Suzuki Y, Takahashi H, Furusato M, et al. Localization of Ang-1, -2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis. Lab Invest. 2006;86:1172–84.

    Article  CAS  PubMed  Google Scholar 

  18. Eilken HM, Diéguez-Hurtado R, Schmidt I, Nakayama M, Jeong H-W, Arf H, et al. Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1. Nat Commun. 2017;8:1574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gerhardt H, Wolburg H, Redies C. N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn. 2000;218:472–9.

    Article  CAS  PubMed  Google Scholar 

  20. Tillet E, Vittet D, Féraud O, Moore R, Kemler R, Huber P. N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis. Exp Cell Res. 2005;310:392–400.

    Article  CAS  PubMed  Google Scholar 

  21. Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N, et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell. 2006;124:161–73.

    Article  CAS  PubMed  Google Scholar 

  22. Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B. Notch3 is critical for proper angiogenesis and mural cell investment. Circ Res. 2010;107:860–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goumans M-J, Lebrin F, Valdimarsdottir G. Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med. 2003;13:301–7.

    Article  CAS  PubMed  Google Scholar 

  24. Papetti M, Shujath J, Riley KN, Herman IM. FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways. Invest Ophthalmol Vis Sci. 2003;44:4994–5005.

    Article  PubMed  Google Scholar 

  25. Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-oncology. 2005;7:452–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tilton RG, Hoffmann PL, Kilo C, Williamson JR. Pericyte degeneration and basement membrane thickening in skeletal muscle capillaries of human diabetics. Diabetes. 1981;30:326–34.

    Article  CAS  PubMed  Google Scholar 

  27. Pollack AA, Wood EH. Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture. J Appl Physiol. 1949;1:649–62.

    Article  CAS  PubMed  Google Scholar 

  28. Birbrair A, Zhang T, Wang Z-M, Messi ML, Enikolopov GN, Mintz A, et al. Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res. 2013;10:67–84.

    Article  CAS  PubMed  Google Scholar 

  29. Egginton S, Zhou AL, Brown MD, Hudlická O. Unorthodox angiogenesis in skeletal muscle. Cardiovasc Res. 2001;49:634–46.

    Article  CAS  PubMed  Google Scholar 

  30. Haas TL, Milkiewicz M, Davis SJ, Zhou AL, Egginton S, Brown MD, et al. Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol. 2000;279:H1540–7.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou A, Egginton S, Hudlická O, Brown MD. Internal division of capillaries in rat skeletal muscle in response to chronic vasodilator treatment with alpha1-antagonist prazosin. Cell Tissue Res. 1998;293:293–303.

    Article  CAS  PubMed  Google Scholar 

  32. Djonov VG, Galli AB, Burri PH. Intussusceptive arborization contributes to vascular tree formation in the chick chorio-allantoic membrane. Anat Embryol (Berl). 2000;202:347–57.

    Article  CAS  PubMed  Google Scholar 

  33. Styp-Rekowska B, Hlushchuk R, Pries AR, Djonov V. Intussusceptive angiogenesis: pillars against the blood flow. Acta Physiol (Oxf). 2011;202:213–23.

    Article  CAS  PubMed  Google Scholar 

  34. Milkiewicz M, Brown MD, Egginton S, Hudlicka O. Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation. 2001;8:229–41.

    Article  CAS  PubMed  Google Scholar 

  35. Rivilis I, Milkiewicz M, Boyd P, Goldstein J, Brown MD, Egginton S, et al. Differential involvement of MMP-2 and VEGF during muscle stretch- versus shear stress-induced angiogenesis. Am J Physiol Heart Circ Physiol. 2002;283:H1430–8.

    Article  CAS  PubMed  Google Scholar 

  36. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Egginton S, Hudlicka O, Brown MD, Graciotti L, Granata AL. In vivo pericyte-endothelial cell interaction during angiogenesis in adult cardiac and skeletal muscle. Microvasc Res. 1996;51:213–28.

    Article  CAS  PubMed  Google Scholar 

  38. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60.

    Article  CAS  PubMed  Google Scholar 

  39. Teichert M, Milde L, Holm A, Stanicek L, Gengenbacher N, Savant S, et al. Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat Commun. 2017;8:16106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lloyd PG, Prior BM, Yang HT, Terjung RL. Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. American Journal of Physiology-Heart and Circulatory Physiology. American Physiological Society. 2003;284:H1668–78.

    Article  CAS  Google Scholar 

  41. Gustafsson T, Rundqvist H, Norrbom J, Rullman E, Jansson E, Sundberg CJ. The influence of physical training on the angiopoietin and VEGF-A systems in human skeletal muscle. J Appl Physiol. 2007;103:1012–20.

    Article  CAS  PubMed  Google Scholar 

  42. Hoier B, Nordsborg N, Andersen S, Jensen L, Nybo L, Bangsbo J, et al. Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J Physiol. 2012;590:595–606.

    Article  CAS  PubMed  Google Scholar 

  43. Pichiule P, Chavez JC, LaManna JC. Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J Biol Chem. 2004;279:12171–80.

    Article  CAS  PubMed  Google Scholar 

  44. Fiedler U, Scharpfenecker M, Koidl S, Hegen A, Grunow V, Schmidt JM, et al. The Tie-2 ligand Angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood. 2004;103:4150–6.

    Article  CAS  PubMed  Google Scholar 

  45. Scholz A, Plate KH, Reiss Y. Angiopoietin-2: a multifaceted cytokine that functions in both angiogenesis and inflammation. Ann N Y Acad Sci. 2015;1347:45–51.

    Article  CAS  PubMed  Google Scholar 

  46. Mofarrahi M, Hussain SNA. Expression and functional roles of angiopoietin-2 in skeletal muscles. PLOS ONE. 2011;6:e22882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koller A, Sun D, Kaley G. Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro. Circ Res. 1993;72:1276–84.

    Article  CAS  PubMed  Google Scholar 

  48. Perrot CY, Herrera JL, Fournier-Goss AE, Komatsu M. Prostaglandin E2 breaks down pericyte–endothelial cell interaction via EP1 and EP4-dependent downregulation of pericyte N-cadherin, connexin-43, and R-Ras. Scientific Reports. 2020;10:11186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cantelmo AR, Conradi L-C, Brajic A, Goveia J, Kalucka J, Pircher A, et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell. 2016;30:968–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nwadozi E, Rudnicki M, Haas TL. Metabolic coordination of pericyte phenotypes: therapeutic implications. Front Cell Dev Biol. 2020;8:77.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Onogi Y, Wada T, Okekawa A, Matsuzawa T, Watanabe E, Ikeda K, et al. Pro-inflammatory macrophages coupled with glycolysis remodel adipose vasculature by producing platelet-derived growth factor-B in obesity. Scientific Reports. 2020;10:670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nehls V, Denzer K, Drenckhahn D. Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res. 1992;270:469–74.

    Article  CAS  PubMed  Google Scholar 

  53. Ribatti D, Nico B, Crivellato E. The role of pericytes in angiogenesis. Int J Dev Biol. 2011;55:261–8.

    Article  CAS  PubMed  Google Scholar 

  54. Stapor PC, Murfee WL. Identification of class III β-tubulin as a marker of angiogenic perivascular cells. Microvasc Res. 2012;83:257–62.

    Article  CAS  PubMed  Google Scholar 

  55. Hoier B, Prats C, Qvortrup K, Pilegaard H, Bangsbo J, Hellsten Y. Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle. FASEB J. 2013;27:3496–504.

    Article  CAS  PubMed  Google Scholar 

  56. Reinmuth N, Liu W, Jung YD, Ahmad SA, Shaheen RM, Fan F, et al. Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J. 2001;15:1239–41.

    Article  CAS  PubMed  Google Scholar 

  57. Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D’Amore PA. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol. 2003;264:275–88.

    Article  CAS  PubMed  Google Scholar 

  58. Timmons JA, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, Ridden J, et al. Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans. BMC Biol. 2005;3:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Burri PH, Tarek MR. A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec. 1990;228:35–45.

    Article  CAS  PubMed  Google Scholar 

  60. Djonov V, Baum O, Burri PH. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res. 2003;314:107–17.

    Article  PubMed  Google Scholar 

  61. Kurz H, Burri PH, Djonov VG. Angiogenesis and vascular remodeling by intussusception: from form to function. News Physiol Sci. 2003;18:65–70.

    PubMed  Google Scholar 

  62. Kurz H, Fehr J, Nitschke R, Burkhardt H. Pericytes in the mature chorioallantoic membrane capillary plexus contain desmin and alpha-smooth muscle actin: relevance for non-sprouting angiogenesis. Histochem Cell Biol. 2008;130:1027–40.

    Article  CAS  PubMed  Google Scholar 

  63. Zhan K, Bai L, Wang G, Zuo B, Xie L, Wang X. Different angiogenesis modes and endothelial responses in implanted porous biomaterials. Integr Biol. 2018;10:406–18.

    Article  CAS  Google Scholar 

  64. Egginton S, Zhou AL, Brown MD, Hudlická O. The role of pericytes in controlling angiogenesis in vivo. Adv Exp Med Biol. 2000;476:81–99.

    Article  CAS  PubMed  Google Scholar 

  65. • Gianni-Barrera R, Butschkau A, Uccelli A, Certelli A, Valente P, Bartolomeo M, et al. PDGF-BB regulates splitting angiogenesis in skeletal muscle by limiting VEGF-induced endothelial proliferation. Angiogenesis. 2018;21:883–900 This study provides evidence that PDGF-BB retains pericyte coverage of capillaries during VEGF-A stimulation in skeletal muscle, which correlates with effective expansion of capillary networks via splitting angiogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yao Y, Chen Z-L, Norris EH, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun. 2014;5:3413.

    Article  PubMed  CAS  Google Scholar 

  67. Yao Y, Norris EH, Mason CE, Strickland S. Laminin regulates PDGFRβ(+) cell stemness and muscle development. Nat Commun. 2016;7:11415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gautam J, Nirwane A, Yao Y. Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther. 2017;8:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Reynolds LE, D’Amico G, Lechertier T, Papachristodoulou A, Muñoz-Félix JM, De Arcangelis A, et al. Dual role of pericyte α6β1-integrin in tumour blood vessels. J Cell Sci. 2017;130:1583–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Skalak TC, Price RJ, Zeller PJ. Where do new arterioles come from? Mechanical forces and microvessel adaptation. Microcirculation. 1998;5:91–4.

    Article  CAS  PubMed  Google Scholar 

  71. Peirce SM, Skalak TC. Microvascular remodeling: a complex continuum spanning angiogenesis to arteriogenesis. Microcirculation. 2003;10:99–111.

    Article  PubMed  Google Scholar 

  72. Volz KS, Jacobs AH, Chen HI, Poduri A, McKay AS, Riordan DP, et al. Pericytes are progenitors for coronary artery smooth muscle. Elife. 2015;4:e10036. https://doi.org/10.7554/eLife.10036.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hansen-Smith F, Egginton S, Zhou AL, Hudlicka O. Growth of arterioles precedes that of capillaries in stretch-induced angiogenesis in skeletal muscle. Microvasc Res. 2001;62:1–14.

    Article  CAS  PubMed  Google Scholar 

  74. Birbrair A, Zhang T, Wang Z-M, Messi ML, Enikolopov GN, Mintz A, et al. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev. 2013;22:2298–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Birbrair A, Zhang T, Wang Z-M, Messi ML, Mintz A, Delbono O. Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol. 2013;305:C1098–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang Z-M, et al. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther. 2014;5:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol. 2007;9:255–67.

    Article  CAS  PubMed  Google Scholar 

  78. Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, et al. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun. 2011;2:499.

    Article  CAS  PubMed  Google Scholar 

  79. Madonna R, Balistreri CR, Geng Y-J, De Caterina R. Diabetic microangiopathy: pathogenetic insights and novel therapeutic approaches. Vascul Pharmacol. 2017;90:1–7.

    Article  CAS  PubMed  Google Scholar 

  80. Hayden MR, Yang Y, Habibi J, Bagree SV, Sowers JR. Pericytopathy: oxidative stress and impaired cellular longevity in the pancreas and skeletal muscle in metabolic syndrome and type 2 diabetes. Oxid Med Cell Longev. 2010;3:290–303.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Beltramo E, Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem. 2013;20:3218–25.

    Article  CAS  PubMed  Google Scholar 

  82. Hammes H-P, Lin J, Wagner P, Feng Y, Vom Hagen F, Krzizok T, et al. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes. 2004;53:1104–10.

    Article  CAS  PubMed  Google Scholar 

  83. Pfister F, Feng Y, vom Hagen F, Hoffmann S, Molema G, Hillebrands J-L, et al. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes. 2008;57:2495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Solomon TPJ, Haus JM, Li Y, Kirwan JP. Progressive hyperglycemia across the glucose tolerance continuum in older obese adults is related to skeletal muscle capillarization and nitric oxide bioavailability. J Clin Endocrinol Metab. 2011;96:1377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Groen BBL, Hamer HM, Snijders T, van Kranenburg J, Frijns D, Vink H, et al. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J Appl Physiol (1985). 2014;116:998–1005.

    Article  CAS  Google Scholar 

  86. Tilton RG, Faller AM, Burkhardt JK, Hoffmann PL, Kilo C, Williamson JR. Pericyte degeneration and acellular capillaries are increased in the feet of human diabetic patients. Diabetologia. 1985;28:895–900.

    Article  CAS  PubMed  Google Scholar 

  87. • Baum O, Bernd J, Becker S, Odriozola A, Zuber B, Tschanz SA, et al. Structural microangiopathies in skeletal muscle related to systemic vascular pathologies in humans. Front Physiol. 2020;11:28 This study demonstrates ultrastructural abnormalities in the endothelial-pericyte contacts in capillaries from individuals with diabetes and with peripheral artery disease and postulates that pericyte processes can penetrate through the endothelial cell to interact directly with plasma.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Faulkner A, Tamiato A, Cathery W, Rampin A, Caravaggi CM, Jover E, et al. Dimethyl-2-oxoglutarate improves redox balance and mitochondrial function in muscle pericytes of individuals with diabetes mellitus. Diabetologia. 2020;63:2205–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lillioja S, Bogardus C. Insulin resistance in Pima Indians. A combined effect of genetic predisposition and obesity-related skeletal muscle cell hypertrophy. Acta Med Scand Suppl. 1988;723:103–19.

    CAS  PubMed  Google Scholar 

  90. Pipinos II, Judge AR, Selsby JT, Zhu Z, Swanson SA, Nella AA, et al. The myopathy of peripheral arterial occlusive disease: part 1. Functional and histomorphological changes and evidence for mitochondrial dysfunction. Vasc Endovascular Surg. 2007;41:481–9.

    Article  PubMed  Google Scholar 

  91. Pipinos II, Judge AR, Selsby JT, Zhu Z, Swanson SA, Nella AA, et al. The myopathy of peripheral arterial occlusive disease: Part 2. Oxidative stress, neuropathy, and shift in muscle fiber type. Vasc Endovascular Surg. 2008;42:101–12.

    Article  PubMed  Google Scholar 

  92. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol. 2015;5:1027–59.

    Article  PubMed  Google Scholar 

  93. Weiss DJ, Casale GP, Koutakis P, Nella AA, Swanson SA, Zhu Z, et al. Oxidative damage and myofiber degeneration in the gastrocnemius of patients with peripheral arterial disease. J Transl Med. 2013;11:230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Brandão D, Costa C, Canedo A, Vaz G, Pignatelli D. Endogenous vascular endothelial growth factor and angiopoietin-2 expression in critical limb ischemia. Int Angiol. 2011;30:25–34.

    PubMed  Google Scholar 

  95. Arpino J-M, Nong Z, Li F, Yin H, Ghonaim N, Milkovich S, et al. Four-dimensional microvascular analysis reveals that regenerative angiogenesis in ischemic muscle produces a flawed microcirculation. Circ Res. 2017;120:1453–65.

    Article  CAS  PubMed  Google Scholar 

  96. Nwadozi E, Rudnicki M, De Ciantis M, Milkovich S, Pulbere A, Roudier E, et al. High-fat diet pre-conditioning improves microvascular remodelling during regeneration of ischaemic mouse skeletal muscle. Acta Physiol (Oxf). 2020;229:e13449.

    Article  CAS  Google Scholar 

  97. Ylä-Herttuala S, Bridges C, Katz MG, Korpisalo P. Angiogenic gene therapy in cardiovascular diseases: dream or vision? European Heart Journal. 2017;38:1365–71.

    PubMed  PubMed Central  Google Scholar 

  98. Lee RJ, Springer ML, Blanco-Bose WE. Shaw Robin, Ursell Philip C., Blau Helen M. VEGF gene delivery to myocardium. Circulation. 2000;102:898–901.

    Article  CAS  PubMed  Google Scholar 

  99. Gianni-Barrera R, Trani M, Fontanellaz C, Heberer M, Djonov V, Hlushchuk R, et al. VEGF over-expression in skeletal muscle induces angiogenesis by intussusception rather than sprouting. Angiogenesis. 2013;16:123–36.

    Article  CAS  PubMed  Google Scholar 

  100. Baum O, Torchetti E, Malik C, Hoier B, Walker M, Walker PJ, et al. Capillary ultrastructure and mitochondrial volume density in skeletal muscle in relation to reduced exercise capacity of patients with intermittent claudication. Am J Physiol Regul Integr Comp Physiol. 2016;310:R943–51.

    Article  PubMed  Google Scholar 

  101. • Mietus CJ, Lackner TJ, Karvelis PS, Willcockson GT, Shields CM, Lambert NG, et al. Abnormal microvascular architecture, fibrosis, and pericyte characteristics in the calf muscle of peripheral artery disease patients with claudication and critical limb ischemia. J Clin Med. 2020;9:2575. https://doi.org/10.3390/jcm9082575This study demonstrates increased collagen deposition and basement membrane thickening in microvessels of ischemic muscle. Pericyte coverage of microvessels was increased and postulated to contribute to this pathological fibrosis.

    Article  CAS  PubMed Central  Google Scholar 

  102. Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2012;125:87–99.

    Article  PubMed  Google Scholar 

  103. Cathery W, Faulkner A, Maselli D, Madeddu P. Concise review: the regenerative journey of pericytes toward clinical translation. Stem Cells. 2018;36:1295–310.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hayes KL, Messina LM, Schwartz LM, Yan J, Burnside AS, Witkowski S. Type 2 diabetes impairs the ability of skeletal muscle pericytes to augment postischemic neovascularization in db/db mice. Am J Physiol, Cell Physiol. 2018;314:C534–44.

    Article  CAS  Google Scholar 

  105. Munroe M, Dvoretskiy S, Lopez A, Leong J, Dyle MC, Kong H, et al. Pericyte transplantation improves skeletal muscle recovery following hindlimb immobilization. FASEB J. 2019;33:7694–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vono R, Fuoco C, Testa S, Pirrò S, Maselli D, Ferland McCollough D, et al. Activation of the Pro-Oxidant PKCβII-p66Shc signaling pathway contributes to pericyte dysfunction in skeletal muscles of patients with diabetes with critical limb ischemia. Diabetes. 2016;65:3691–704.

    Article  CAS  PubMed  Google Scholar 

  107. Birbrair A, Zhang T, Wang Z-M, Messi ML, Olson JD, Mintz A, et al. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol. 2014;307:C25–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. • Kovacs-Oller T, Ivanova E, Bianchimano P, Sagdullaev BT. The pericyte connectome: spatial precision of neurovascular coupling is driven by selective connectivity maps of pericytes and endothelial cells and is disrupted in diabetes. Cell Discov. 2020;6:1–18 This study demonstrates directional signaling between pericytes and endothelial cells in the retina that participates in precise blood flow control. This functional coupling is significantly disrupted by chronic severe hyperglycemia.

    Article  CAS  Google Scholar 

  109. Williamson JR, Tilton RG, Kilo C, Yu S. Immunofluorescent imaging of capillaries and pericytes in human skeletal muscle and retina. Microvascular Research. 1980;20:233–41.

    Article  CAS  PubMed  Google Scholar 

  110. •• Corliss BA, Ray HC, Doty R, Mathews C, Sheybani N, Fitzgerald K, et al. Pericyte Bridges in Homeostasis and hyperglycemia: reconsidering pericyte dropout and microvascular structures. Diabetes. 2020;10:15808. https://doi.org/10.1038/s41598-020-72875-xThis study documents the presence of dynamic pericyte processes connect multiple capillaries in the retinal and skeletal muscle microvasculature and provides evidence that decreased pericyte coverage in response to hyperglycemia can be explained by pericyte movement away from the capillary.

    Article  CAS  Google Scholar 

  111. Alarcon-Martinez L, Villafranca-Baughman D, Quintero H, Kacerovsky JB, Dotigny F, Murai KK, et al. Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature. 2020;585:91–5.

    Article  CAS  PubMed  Google Scholar 

  112. Tilton RG, Kilo C, Williamson JR, Murch DW. Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures. Microvasc Res. 1979;18:336–52.

    Article  CAS  PubMed  Google Scholar 

  113. Sims DE, Westfall JA. Analysis of relationships between pericytes and gas exchange capillaries in neonatal and mature bovine lungs. Microvasc Res. 1983;25:333–42.

    Article  CAS  PubMed  Google Scholar 

  114. • Nwadozi E, Ng A, Strömberg A, Liu H-Y, Olsson K, Gustafsson T, et al. Leptin is a physiological regulator of skeletal muscle angiogenesis and is locally produced by PDGFRα and PDGFRβ expressing perivascular cells. Angiogenesis. 2019;22:103–15 This study provides evidence that leptin contributes to physiological skeletal muscle angiogenesis via regulation of skeletal muscle VEGF-A production. Further, pericytes produce leptin in response to nutrient excess, suggesting a novel nutrient sensing role of pericytes.

    Article  CAS  PubMed  Google Scholar 

  115. Muoio DM, Dohm GL, Fiedorek FT, Tapscott EB, Coleman RA, Dohn GL. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes. 1997;46:1360–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Some elements within the schematic figures were generated using Biorender.com. Funding to TLH from Natural Science and Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara L. Haas.

Ethics declarations

All reported experiments with animal subjects were performed in accordance with all applicable ethical standards including the Helsinki declaration and its amendments, institutional research committee standards, and international/national/institutional guidelines.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pericytes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwadozi, E., Haas, T.L. Emerging Roles of Pericytes in Coordinating Skeletal Muscle Functions: Implications and Therapeutic Potential. Curr. Tissue Microenviron. Rep. 2, 29–39 (2021). https://doi.org/10.1007/s43152-021-00029-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43152-021-00029-w

Keywords

Navigation