Skip to main content
Log in

Mean random attractors of stochastic lattice fractional delay Gray–Scott equations in higher moment product sequence spaces

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of mean attractors in some higher moment product sequence spaces for a three-component reversible lattice stochastic Gray–Scott equation, where the nonlinear terms have polynomial growth of arbitrary orders, and the diffusion term is a locally Lipschitz function with a time-delay effect. We first formulate the equation into an abstract one in \(\mathbb {L}^2=:\ell ^2\times \ell ^2\times \ell ^2\). We then establish the well-posedness and Itô’s energy equalities for the system in \(L^{2k}(\Omega , \mathcal {F}; \mathbb {L}^2)\times L^{2k}\big (\Omega , \mathcal {F}; L^{2k}((-\rho , 0), \mathbb {L}^2)\big )\) over the complete filtered probability space \((\Omega ,\mathcal {F}, \{\mathcal {F}_t\}_{t\in \mathbb {R}},\mathbb {P})\), where the index \(k\ge 1\) is arbitrary and \(\rho \ge 0\) is the time-delay parameter. Finally, we prove that the mean random dynamical system admits a unique mean random attractor in this high-order Banach space in the sense of Wang (J Dyn Differ Equ 31:2177–2204, 2019). Our results are new even in the product Hilbert space \(L^{2}(\Omega , \mathcal {F}; \mathbb {L}^2)\times L^{2}\big (\Omega , \mathcal {F}; L^{2}((-\rho , 0), \mathbb {L}^2)\big )\) when \(k=1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Araki, H., Moriya, H.: Equilibrium statistical mechanics of fermion lattice system. Rev. Math. Phys. 2, 93–198 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Bates, P.W., Lu, K., Wang, B.: Attractors for lattice dynamical systems. Int. J. Bifurc. Chaos 11(01), 143–153 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Bates, P.W., Chen, X., Chmaj, A.: Traveling waves of bistable dynamics on a lattice. SIAM J. Math. Anal. 35, 520–546 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Bunimovich, L.A., Venkatagiri, S.: On one mechanism of transition to chaos in lattice dynamical systems. Phys. Rep. 290, 81–100 (1997)

    Google Scholar 

  5. Cahn, J.W.: Theory of crystal growth and interface motion in crystalline materials. Acta Metall. 8, 554–562 (1960)

    Google Scholar 

  6. Caraballo, T., Langa, J.A.: On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10, 491–513 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Caraballo, T., Langa, J.A., Melnik, V.S., Valero, J.: Pullback attractors of nonautonomous and stochastic multivalued dynamical systems. Set Valued Anal. 11, 153–201 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Caraballo, T., Lu, K.: Attractors for stochastic lattice dynamical systems with a multiplicative noise. Front. Math. China 3, 317–335 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Caraballo, T., Garrido-Atienza, M.J., Schmalfuss, B., Valero, J.: Non-autonomous and random attractors for delay random semilinear equations without uniqueness. Discrete Contin. Dyn. Syst. 21, 415–443 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Caraballo, T., Real, J., Chueshov, I.D.: Pullback attractors for stochastic heat equations in materials with memory. Discrete Contin. Dyn. Syst. Ser. B 9, 525–539 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Caraballo, T., Morillas, F., Valero, J.: Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity. J. Differ. Equ. Appl. 17(02), 161–184 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Caraballo, T., Garrido-Atienza, M.J., Taniguchi, T.: The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal. 74, 3671–3684 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Caraballo, T., Morillas, F., Valero, J.: Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities. J. Differ. Equ. 253, 667–693 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Caraballo, T., Morillas, F., Valero, J.: On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete Contin. Dyn. Syst. 34(1), 51–77 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Caraballo, T., Morillas, F., Valero, J.: Asymptotic behaviour of a logistic lattice system. Discrete Contin. Dyn. Syst. 34(10), 4019–4037 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Caraballo, T., Han, X., Schmalfuß, B., Valero, J.: Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise. Nonlinear Anal. 130, 255–278 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Caraballo, T., Guo, B., Tuan, N.H., Wang, R.: Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains. Proc. R. Soc. Edinb. Sect. A 151, 1700–1730 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Chua, L.O., Roska, T.: The CNN paradigm. IEEE Trans. Circuits Syst. 40, 147–156 (1993)

    MATH  Google Scholar 

  19. Chen, P., Freitas, M.M., Zhang, X.: Random attractor, invariant measures, and ergodicity of lattice \(p\)-Laplacian equations driven by superlinear noise. J. Geom. Anal. 33(3), 1–46 (2023)

    MathSciNet  MATH  Google Scholar 

  20. Chen, P., Wang, B., Wang, R., Zhang, X.: Multivalued random dynamics of Benjamin–Bona–Mahony equations driven by nonlinear colored noise on unbounded domains. Math. Ann. 386, 343–373 (2022)

    MathSciNet  MATH  Google Scholar 

  21. Chen, P., Wang, R., Zhang, X.: Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains. Bull. Sci. Math. 173, 103071 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Chow, S.N., Shen, W.: Dynamics in a discrete Nagumo equation: spatial topological chaos. SIAM J. Appl. Math. 55, 1764–1781 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Chow, S.N., Mallet-Paret, J., Van Vleck, E.S.: Dynamics of lattice differential equations. Int. J. Bifurc. Chaos 6(09), 1605–1621 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Springer Science and Business Media, Berlin (2012)

    MATH  Google Scholar 

  25. Crauel, H., Flandoli, F.: Attractors for random dynamical systems. Probab. Theory Relat. Fields 100, 365–393 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Chen, Z., Wang, B.: Weak mean attractors and invariant measures for stochastic Schrödinger delay lattice systems. J. Dyn. Differ. Equ. (2022). https://doi.org/10.1007/s10884-021-10085-3

    Article  Google Scholar 

  27. Chen, Z., Wang, B.: Existence, exponential mixing and convergence of periodic measures of fractional stochastic delay reaction–diffusion equations on \(\mathbb{R} ^n\). J. Differ. Equ. 336, 505–564 (2022)

    MATH  Google Scholar 

  28. Ciaurri, Ó., Roncal, L., Stinga, P.R., Torrea, J.L., Varona, J.L.: Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications. Adv. Math. 330, 688–738 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Diestel, J., Jr., Uhl, J.: Vector Measures. Mathematical Surveys, vol. 15. American Mathematical Society, Providence (1997)

    Google Scholar 

  30. Erneux, T., Nicolis, G.: Propagating waves in discrete bistable reaction diffusion systems. Phys. D Nonlinear Phenom. 67, 237–244 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Feng, J., Liu, H., Xin, J.: Uniform attractors of stochastic three-component Gray–Scott system with multiplicative noise. Math. Found. Comput. 4, 193–208 (2021)

    MATH  Google Scholar 

  32. Gallavotti, G., Miracle-Sole, S.: Statistical mechanics of lattice systems. Commun. Math. Phys. 5(5), 317–323 (1967)

    MathSciNet  MATH  Google Scholar 

  33. Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system \(a+2b\rightarrow 3b\), \(b\rightarrow c\). Chem. Eng. Sci. 39, 1087–1097 (1984)

    Google Scholar 

  34. Gu, A.: Pullback \(\cal{D}\)-attractor of non-autonomous three-component reversible Gray–Scott system on unbounded Domains. Abstr. Appl. Anal. 2013, 1–13 (2013)

    Google Scholar 

  35. Gu, A., Zhou, S., Wang, Z.: Uniform attractor of non-autonomous three-component reversible Gray–Scott system. J. Appl. Math. Comput. 219, 8718–8729 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Han, X.: Exponential attractors for lattice dynamical systems in weighted spaces. Discrete Contin. Dyn. Syst. 31(2), 445–467 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Han, X., Shen, W., Zhou, S.: Random attractors for stochastic lattice dynamical systems in weighted spaces. J. Differ. Equ. 250, 1235–1266 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Han, X., Kloeden, P.E., Sonner, S.: Discretisation of global attractors for lattice dynamical systems. J. Dyn. Differ. Equ. 32, 1457–1474 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Han, X., Kloeden, P.E., Usman, B.: Upper semi-continuous convergence of attractors for a Hopfield-type lattice model. Nonlinearity 33(4), 1881–1906 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Han, X., Kloeden, P.E.: Asymptotic behavior of a neural field lattice model with a Heaviside operator. Phys. D Nonlinear Phenom. 389, 1–12 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Han, X., Shen, W., Zhou, S.: Random attractors for stochastic lattice dynamical systems in weighted spaces. J. Differ. Equ. 250, 1235–1266 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Jia, X., Gao, J., Ding, X.: Random attractors for stochastic two-compartment Gray–Scott equations with a multiplicative noise. Open. Math. 14, 586–602 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Kapval, R.: Discrete models for chemically reacting systems. J. Math. Chem. 6, 113–163 (1991)

    MathSciNet  Google Scholar 

  44. Kartashov, Y.V., Malomed, B.A., Vysloukh, V.A., Torner, L.: Two-dimensional solitons in nonlinear lattices. Opt. Lett. 34(6), 770–772 (2009)

    Google Scholar 

  45. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83(1), 247–305 (2011)

    Google Scholar 

  46. Kloeden, P.E., Lorenz, T.: Mean-square random dynamical systems. J. Differ. Equ. 253, 1422–1438 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Kloeden, P.E., Han, X.: Dissipative Lattice Dynamical Systems. World Scientific Publishing Co., Inc, Singapore (2023)

    MATH  Google Scholar 

  48. Li, F., Xu, D., Yu, J.: Bi-spatial and Wong–Zakai approximations dynamics for fractional stochastic reaction–diffusion equations. Banach J. Math. Anal. 17, 1–32 (2023)

    MathSciNet  MATH  Google Scholar 

  49. Li, H., Tu, J.: Random attractors for stochastic lattice reversible Gray–Scott systems with additive noise. Electron. J. Differ. Equ. 2015, 1–25 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Li, D., Wang, B., Wang, X.: Limiting behavior of invariant measures of stochastic delay lattice systems. J. Dyn. Differ. Equ. 4, 1453–1487 (2022)

    MathSciNet  MATH  Google Scholar 

  51. Mallet-Paret, J., Chow, S.N.: Pattern formation and spatial chaos in lattice dynamical systems. II. IEEE Trans. Circuits Syst. 42(10), 746–751 (1995)

    MathSciNet  Google Scholar 

  52. Mahara, H., Suematsu, N.J., Yamaguchi, T., Ohgane, K., Nishiura, Y., Shimomura, M.: Three-variable reversible Gray–Scott model. J. Chem. Phys. 121, 8968–8972 (2004)

    Google Scholar 

  53. Pang, P., Wang, M.: Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion. Proc. Lond. Math. Soc. 1(1), 135–157 (2004)

    MathSciNet  MATH  Google Scholar 

  54. Perez-Munuzuri, A., Perez-Munuzuri, V., Perez-Villar, V., Chua, L.O.: Spiral waves on a 2-D array of nonlinear circuits. IEEE Trans. Circuits Syst. 40, 872–877 (1993)

    MATH  Google Scholar 

  55. Qin, X., Wang, R.: Global well-posedness, mean attractors and invariant measures of generalized reversible Gray–Scott lattice systems driven by nonlinear noise (2023) (Submitted)

  56. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  57. Roska, T., Chua, L.O.: The CNN universal machine: an analogic array computer. IEEE Trans. Circuits Syst. 40, 163–173 (1993)

    MATH  Google Scholar 

  58. Satulovsky, J.E., Tomé, T.: Stochastic lattice gas model for a predator-prey system. Phys. Rev. E 49(6), 5073–5079 (1994)

    Google Scholar 

  59. Sander, E., Wanner, T.: Validated saddle-node bifurcations and applications to lattice dynamical systems. SIAM J. Appl. Dyn. Syst. 15(3), 1690–1733 (2016)

    MathSciNet  MATH  Google Scholar 

  60. Schmalfuss, B.: Backward cocycles and attractors of stochastic differential equations. In: International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, pp. 185–192 (1992)

  61. Vikhrenko, V.S., Groda, Y.G., Bokun, G.S.: The diagram approximation for lattice systems. Phys. Lett. A 286, 127–133 (2001)

    MathSciNet  MATH  Google Scholar 

  62. Wang, B.: Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J. Differ. Equ. 253, 1544–1583 (2012)

    MathSciNet  MATH  Google Scholar 

  63. Wang, B.: Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete Contin. Dyn. Syst. 34, 269–300 (2014)

    MathSciNet  MATH  Google Scholar 

  64. Wang, B.: Dynamics of stochastic reaction–diffusion lattice systems driven by nonlinear noise. J. Math. Anal. Appl. 477, 104–132 (2019)

    MathSciNet  MATH  Google Scholar 

  65. Wang, B.: Weak pullback attractors for mean random dynamical systems in Bochner spaces. J. Dyn. Differ. Equ. 31, 2177–2204 (2019)

    MathSciNet  MATH  Google Scholar 

  66. Wang, B.: Weak pullback attractors for stochastic Navier–Stokes equations with nonlinear diffusion terms. Proc. Am. Math. Soc. 147, 1627–1638 (2019)

    MathSciNet  MATH  Google Scholar 

  67. Wang, B.: Dynamics of fractional stochastic reaction–diffusion equations on unbounded domains driven by nonlinear noise. J. Differ. Equ. 268, 1–59 (2019)

    MathSciNet  MATH  Google Scholar 

  68. Wang, B., Wang, R.: Asymptotic behavior of stochastic Schrödinger lattice systems driven by nonlinear noise. Stoch. Anal. Appl. 38, 213–237 (2020)

    MathSciNet  MATH  Google Scholar 

  69. Wang, M.: Non-constant positive steady-states of the Sel’kov model. J. Differ. Equ. 190, 600–620 (2003)

    MATH  Google Scholar 

  70. Wang, R., Kinra, K., Mohan, M.T.: Asymptotically autonomous robustness in probability of random attractors for stochastic Navier–Stokes equations on unbounded Poincaré domains. SIAM J. Math. Anal. 55(4), 2644–2676 (2023)

    MathSciNet  MATH  Google Scholar 

  71. Wang, R., Wang, B.: Random dynamics of \(p\)-Laplacian lattice systems driven by infinite-dimensional nonlinear noise. Stoch. Process. Appl. 130, 7431–7462 (2020)

    MathSciNet  MATH  Google Scholar 

  72. Wang, R.: Long-time dynamics of stochastic lattice plate equations with non-linear noise and damping. J. Dyn. Differ. Equ. 33(2), 767–803 (2021)

    MATH  Google Scholar 

  73. Wang, R., Wang, B.: Random dynamics of non-autonomous fractional stochastic \(p\)-Laplacian equations on \(\mathbb{R} ^N\). Banach J. Math. Anal. 15, 1–42 (2021)

    Google Scholar 

  74. Wang, R., Guo, B., Liu, W., Nguyen, D.T.: Fractal dimension of random invariant sets and regular random attractors for stochastic hydrodynamical equations. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02661-3

    Article  Google Scholar 

  75. Wang, R., Li, Y., Wang, B.: Random dynamics of fractional nonclassical diffusion equations driven by colored noise. Discrete Contin. Dyn. Syst. 39, 4091–4126 (2019)

    MathSciNet  MATH  Google Scholar 

  76. Wang, R., Shi, L., Wang, B.: Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on \(\mathbb{R} ^N\). Nonlinearity 32, 4524–4556 (2019)

    MathSciNet  MATH  Google Scholar 

  77. Xu, J., Zhang, Z., Caraballo, T.: Non-autonomous nonlocal partial differential equations with delay and memory. J. Differ. Equ. 270, 505–546 (2021)

    MathSciNet  MATH  Google Scholar 

  78. Xu, J., Caraballo, T.: Long time behavior of stochastic nonlocal partial differential equations and Wong–Zakai approximations. SIAM J. Math. Anal. 54, 2792–2844 (2022)

    MathSciNet  MATH  Google Scholar 

  79. Yin, J.: Dynamics of non-autonomous stochastic rotational inertia and Kelvin–Voigt dissipative plate equations with Laplace-multiplier noise. Banach J. Math. Anal. 17, 1–27 (2023)

    MathSciNet  MATH  Google Scholar 

  80. You, Y.: Dynamics of three-component reversible Gray–Scott model. Discrete Contin. Dyn. Syst. 14(4), 1671–1688 (2010)

    MathSciNet  MATH  Google Scholar 

  81. Zhao, C., Zhou, S.: Attractors of retarded first order lattice systems. Nonlinearity 20(8), 1987–2006 (2007)

    MathSciNet  MATH  Google Scholar 

  82. Zhao, C., Caraballo, T., Łukaszewicz, G.: Statistical solution and Liouville type theorem for the Klein–Gordon–Schrödinger equations. J. Differ. Equ. 281, 1–32 (2021)

    MATH  Google Scholar 

  83. Zhao, C., Wang, J., Caraballo, T.: Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier–Stokes equations. J. Differ. Equ. 317, 474–494 (2022)

    MathSciNet  MATH  Google Scholar 

  84. Zhang, Q.: Asymptotic dynamics of stochastic delay nonclassical diffusion equations on unbounded domains. Banach J. Math. Anal. 16, 1–42 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Lianbing She was supported by the Science and Technology Foundation of Guizhou Province ([2020]1Y007) and School Level Foundation of Liupanshui Normal University (LPSSYKJTD201907). Renhai Wang was supported by the National Natural Science Foundation of China (12301299), the research fund of Qianshixinmiao [2022]B16, Natural Science Research Project of Guizhou Provincial Department of Education (no. QJJ[2023]011), and the research fund of Qiankehepingtairencai-YSZ[2022]022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renhai Wang.

Additional information

Communicated by Ti-Jun Xiao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., She, L. & Wang, R. Mean random attractors of stochastic lattice fractional delay Gray–Scott equations in higher moment product sequence spaces. Banach J. Math. Anal. 17, 82 (2023). https://doi.org/10.1007/s43037-023-00310-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-023-00310-0

Keywords

Mathematics Subject Classification

Navigation