Skip to main content
Log in

Exponential type bases on a finite union of certain disjoint intervals of equal length

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

Let \(\Lambda\) be a sequence of distinct real numbers and \(\mathsf {T}=\{\epsilon _0,\dots ,\) \(\epsilon _{\nu -1}: \epsilon _i<\epsilon _{i+1}\}\) be a finite set of nonnegative integers. To each \((\Lambda ,\mathsf {T})\), we associate a system of exponentials

$$\begin{aligned} \mathcal {E}(\Lambda ,\mathsf {T}):=\left\{ x^{\epsilon _0}{\rm e}^{2\pi i\lambda x},x^{\epsilon _1}{\rm e}^{2\pi i\lambda x},\dots ,x^{\epsilon _{\nu -1}}{\rm e}^{2\pi i\lambda x}:\lambda \in \Lambda \right\} . \end{aligned}$$

For a disconnected set \(\Omega\), the construction of a Riesz basis of exponential system \(\mathcal {E}(\Lambda ,\mathsf {T})\) on \(L^2(\Omega )\) is generally a difficult problem. In the literature, the exponential Riesz basis problem is solved for certain disconnected sets \(\Omega\) for \(\nu =1\) and \(\epsilon _0=0\). It is well-known that this problem is equivalent to the construction of a complete interpolation set in the Paley–Wiener space \(\mathcal{PW}\mathcal{}(\Omega )\). In this paper, we construct a complete interpolation set involving derivative samples in the Paley–Wiener space of a finite union of certain disjoint intervals of equal length. Furthermore, we provide an explicit sampling formula in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Avdonin, I., Avdonin, S.A., Ivanov, S.A.: Families of exponentials: the method of moments in controllability problems for distributed parameter systems. Cambridge Univ. Press, Cambridge (1995)

    MATH  Google Scholar 

  2. Beurling, A.: In: Carleson, L., Beurling, E.A. (eds.) Collected Works, vol. 2, pp. 341–365. Birkhäuser, Boston (1989)

    Google Scholar 

  3. Bezuglaya, L., Katsnel’son, V.E.: The sampling theorem for functions with limited multi-band spectrum. Z. Anal. Anwend. 12(3), 511–534 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Carli, L.: Concerning exponential bases on multi-rectangles of \({\mathbb{R}} ^d\). In: Topics in Classical and Modern Analysis: In Memory of Yingkang Hu, vol. 65 (2019)

  5. Fogel, L.J.: A note on the sampling theorem. IRE Trans. Inf. Theory IT–1, 47–48 (1955)

    Article  Google Scholar 

  6. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators II, Operator Theory: Advances and Applications, vol. 63. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  7. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Basic Classes of Linear Operators. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  8. Grepstad, S., Lev, N.: Riesz bases, Meyer’s quasicrystals, and bounded remainder sets. Trans. Am. Math. Soc. 370, 4273–4298 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gröchenig, K.: Foundations of Time-Frequency Analysis. Appl. Numer. Harmon. Anal. Birkhäuser Boston Inc., Boston (2001)

    Google Scholar 

  10. Hogan, J.A., Lakey, J.D.: Duration and Bandwidth Limiting. Prolate Functions, Sampling, and Applications. Birkhäuser, Boston (2012)

    Book  MATH  Google Scholar 

  11. Jagerman, D.L., Fogel, L.J.: Some general aspects of the sampling theorem. IRE Trans. Inf. Theory IT–2, 139–146 (1956)

    Article  Google Scholar 

  12. Kozma, G., Nitzan, S.: Combining Riesz bases. Invent. Math. 199, 267–285 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Linden, D.A., Abramson, N.M.: A generalization of the sampling theorem. Inf. Control 3, 26–31 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Landau, H.J.: Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117, 37–52 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Levinson, N.: Gap and Density Theorems, vol. 26. Amer. Math. Soc. Colloq. Publications, Providence (1940)

    MATH  Google Scholar 

  16. Olevskii, A., Ulanovskii, A.: Functions with Disconnected Spectrum. Amer. Math. Soc., Providence (2016)

    Book  MATH  Google Scholar 

  17. Paley, R.E.A.C., Wiener, N.: Fourier Transforms in the Complex Domain. Amer. Math. Soc. Colloq. Publ., Providence (1934)

    MATH  Google Scholar 

  18. Papoulis, A.: Generalized sampling expansion. IEEE Trans. Circuits Syst. 24(11), 652–654 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pavlov, B.S.: Basicity of an exponential systems and Muckenhoupt’s condition. Sov. Math. Dokl. 20, 655–659 (1979)

    MATH  Google Scholar 

  20. Rawn, M.D.: A stable nonuniform sampling expansion involving derivatives. IEEE Trans. Inf. Theory 36, 1223–1227 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Seip, K.: On the connection between exponential bases and certain related sequences in \(L^2(-\pi,\pi )\). J. Funct. Anal. 139, 131–160 (1995)

    Article  MATH  Google Scholar 

  22. Young, R.M.: An Introduction to Non-harmonic Fourier Series. Academic Press, New York-London (1980)

    Google Scholar 

  23. Zibulski, M., Segalescu, V.A., Cohen, N., Zeevi, Y.Y.: Frame analysis of irregular periodic sampling of signals and their derivatives. J. Fourier Anal. Appl. 2, 453–471 (1995)

Download references

Acknowledgements

The authors would like to thank the anonymous referee for his/her valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Antony Selvan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Deguang Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, R., Selvan, A.A. Exponential type bases on a finite union of certain disjoint intervals of equal length. Banach J. Math. Anal. 16, 53 (2022). https://doi.org/10.1007/s43037-022-00207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-022-00207-4

Keywords

Mathematics Subject Classification

Navigation