Skip to main content
Log in

New families of fractional Sobolev spaces

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

This paper presents three new families of fractional Sobolev spaces and their accompanying theory in one dimension. The new construction and theory are based on a newly developed notion of weak fractional derivatives, which are natural generalizations of the well-established integer order Sobolev spaces and theory. In particular, two new families of one-sided fractional Sobolev spaces are introduced and analyzed, and they reveal more insights about another family of so-called symmetric fractional Sobolev spaces. Many key theorems/properties, such as density/approximation theorem, extension theorems, one-sided trace theorem, and various embedding theorems and Sobolev inequalities in those Sobolev spaces are established. Moreover, a few relationships with existing fractional Sobolev spaces are also uncovered. The results of this paper lay down a solid theoretical foundation for systematically developing a fractional calculus of variations theory and a fractional PDE theory as well as their numerical solutions in subsequent works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code Availability Statement

Not applicable.

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Besov, O.V., Il’in, V.P., Nikol’skii, S.M.: Integral Representations of Functions and Embedding Theorems. Izdat (1975)

  3. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011)

    Book  Google Scholar 

  4. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. PDEs 32, 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  5. Du, Q.: Nonlocal Modeling, Analysis, and Computation. SIAM, Philadelphia (2019)

    Book  Google Scholar 

  6. Ervin, V., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods PDEs 22, 558–576 (2006)

    Article  MathSciNet  Google Scholar 

  7. Evans, L.C.: Partial Differential Equations. AMS, New York (2010)

    MATH  Google Scholar 

  8. Feng, X., Sutton, M.: A New Theory of Fractional Differential Calculus and Fractional Sobolev Spaces: One-Dimensional Case. Research notes. arXiv:2004.10833

  9. Feng, X., Sutton, M.: A new theory of fractional differential calculus. Anal. Appl. 19, 715–750 (2021)

    Article  MathSciNet  Google Scholar 

  10. Feng, X., Sutton, M.: On a new class of fractional calculus of variations and related fractional differential equations. Adv. Differ. Equ. 35, 299–338 (2022)

    MathSciNet  MATH  Google Scholar 

  11. Fujishiro, K., Yamamoto, M.: Approximate controllability for fractional diffusion equations by interior control. Appl. Anal. 94, 1793–1801 (2014)

    Article  MathSciNet  Google Scholar 

  12. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    MATH  Google Scholar 

  13. Gorenflo, R., Kilbas, A., Mainardi, F., Rogosin, S.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  14. Guo, B., Pu, X., Huang, F.: Fractional Partial Differential Equations and their Numerical Solutions. World Scientific Publishing Co., Singapore (2015)

    Book  Google Scholar 

  15. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Press, Singapore (2000)

    Book  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  17. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)

    Book  Google Scholar 

  18. Mainardi, F.: Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics. Springer, Berlin (1997)

    MATH  Google Scholar 

  19. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  Google Scholar 

  20. Malinowska, A.B., Odzijewicz, T., Torres, D.F.M.: Advanced Methods in the Fractional Calculus of Variations. Springer, Berlin (2015)

    Book  Google Scholar 

  21. Meerschaert, M., Sikorskii, A.: Stochastic Models for Fractional Calculus. de Gruyter, Berlin (2012)

    MATH  Google Scholar 

  22. Meyers, N.G., Serrin, J.: H = W. Proc. Natl. Acad. Sci. 51, 1055–1056 (1964)

    Article  Google Scholar 

  23. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2021)

    Article  MathSciNet  Google Scholar 

  24. Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)

    MATH  Google Scholar 

  25. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  26. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. CRC Press (1993)

  27. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  28. Taheri, A.: Function Spaces and Partial Differential Equations, vol. 2. Oxford University Press, Oxford (2015)

    Book  Google Scholar 

  29. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. Birkhäuser Verlag, Basel (1983)

    MATH  Google Scholar 

  30. Triebel, H.: Theory of Function Spaces. North-Holland Publishing Co., Amsterdam (1978)

    MATH  Google Scholar 

Download references

Funding

The authors are partially supported by the NSF grants DMS-1620168 and DMS-2012414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Sutton.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Communicated by Tom ter Elst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Sutton, M. New families of fractional Sobolev spaces. Banach J. Math. Anal. 16, 46 (2022). https://doi.org/10.1007/s43037-022-00198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-022-00198-2

Keywords

Mathematics Subject Classification

Navigation