Skip to main content
Log in

Morrey spaces for Schrödinger operators with certain nonnegative potentials, Littlewood–Paley and Lusin functions on the Heisenberg groups

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

Let \({\mathcal {L}}=-\varDelta _{{\mathbb {H}}^n}+V\) be a Schrödinger operator on the Heisenberg group \({\mathbb {H}}^n\), where \(\varDelta _{{\mathbb {H}}^n}\) is the sublaplacian on \({\mathbb {H}}^n\) and the nonnegative potential V belongs to the reverse Hölder class \(RH_q\) with \(q\ge Q/2\). Here \(Q=2n+2\) is the homogeneous dimension of \({\mathbb {H}}^n\). In this paper the author first introduces a class of Morrey spaces associated with the Schrödinger operator \({\mathcal {L}}\) on \({\mathbb {H}}^n\). Then by using some pointwise estimates of the kernels related to the nonnegative potential V, the author establishes the boundedness properties of the Littlewood–Paley function \({\mathfrak {g}}_{{\mathcal {L}}}\) and the Lusin area integral \({\mathcal {S}}_{{\mathcal {L}}}\)(with respect to the heat semigroup \(\{e^{-s{\mathcal {L}}}\}_{s>0}\)) acting on the Morrey spaces. It can be shown that the same conclusions also hold for the operators \({\mathfrak {g}}_{\sqrt{{\mathcal {L}}}}\) and \({\mathcal {S}}_{\sqrt{{\mathcal {L}}}}\) with respect to the Poisson semigroup \(\{e^{-s\sqrt{{\mathcal {L}}}}\}_{s>0}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R.: Morrey Spaces, Lecture Notes in Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Cham (2015)

    Google Scholar 

  2. Adams, D.R., Xiao, J.: Morrey spaces in harmonic analysis. Ark. Math. 50, 201–230 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Adams, D.R., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53, 1629–1663 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Bongioanni, B., Harboure, E., Salinas, O.: Classes of weights related to Schrödinger operators. J. Math. Anal. Appl. 373, 563–579 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Bongioanni, B., Harboure, E., Salinas, O.: Weighted inequalities for commutators of Schrödinger–Riesz transforms. J. Math. Anal. Appl. 392, 6–22 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Bongioanni, B., Cabral, A., Harboure, E.: Extrapolation for classes of weights related to a family of operators and applications. Potential Anal. 38, 1207–1232 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Bongioanni, B., Cabral, A., Harboure, E.: Lerner’s inequality associated to a critical radius function and applications. J. Math. Anal. Appl. 407, 35–55 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Bui, T.A.: Weighted estimates for commutators of some singular integrals related to Schrödinger operators. Bull. Sci. Math. 138, 270–292 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Dziubański, J., Zienkiewicz, J.: Hardy spaces associated with some Schrödinger operators. Stud. Math. 126, 149–160 (1997)

    MATH  Google Scholar 

  10. Dziubański, J., Zienkiewicz, J.: Hardy space \(H^1\) associated to Schrödinger operator with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoamericana 15, 279–296 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Dziubański, J., Zienkiewicz, J.: \(H^p\) spaces associated with Schrödinger operators with potentials from reverse Hölder classes. Colloq. Math. 98, 5–38 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Dziubański, J., Garrigós, G., Martínez, T., Torrea, J.L., Zienkiewicz, J.: \(BMO\) spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z. 249, 329–356 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Di Fazio, G., Ragusa, M.A.: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal 112, 241–256 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Di Fazio, G., Palagachev, D.K., Ragusa, M.A.: Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients. J. Funct. Anal. 166, 179–196 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Folland, G.B.: Harmonic Analysis in Phase Space, Annals of Mathematics Studies. Princeton Univ. Press, Princeton (1989)

    Google Scholar 

  16. Folland, G.B., Stein, E.M.: Estimates for the \(\bar{\partial }_b\) complex and analysis on the Heisenberg group. Comm. Pure Appl. Math. 27, 429–522 (1974)

    MathSciNet  MATH  Google Scholar 

  17. Goldstein, J.A.: Semigroups of Linear Operators and Applications. Oxford Univ. Press, New York (1985)

    MATH  Google Scholar 

  18. Guliyev, V.S., Eroglu, A., Mammadov, Y.Y.: Riesz potential in generalized Morrey spaces on the Heisenberg group. J. Math. Sci. (N.Y.) 189, 365–382 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Hofmann, S., Lu, G.Z., Mitrea, D., Mitrea, M., Yan, L.X.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Am. Math. Soc. 214, (2011)

  20. Jiang, R.J., Jiang, X.J., Yang, D.C.: Maximal function characterizations of Hardy spaces associated with Schrödinger operators on nilpotent Lie groups. Rev. Mat. Complut. 24, 251–275 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Li, H.Q.: Estimations \(L^p\) des opérateurs de Schrödinger sur les groupes nilpotents. J. Funct. Anal. 161, 152–218 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Lin, C.C., Liu, H.P.: \(BMO_{L}({\mathbb{H}}^n)\) spaces and Carleson measures for Schrödinger operators. Adv. Math. 228, 1631–1688 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Lu, G.Z.: A Fefferman–Phong type inequality for degenerate vector fields and applications. Panam. Math. J. 6, 37–57 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Mizuhara, T.: Boundedness of Some Classical Operators on Generalized Morrey Spaces, Harmonic Analysis, ICM-90 Satellite Conference Proceedings, pp. 183–189. Springer, Tokyo (1991)

    MATH  Google Scholar 

  25. Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126–166 (1938)

    MathSciNet  MATH  Google Scholar 

  26. Pan, G.X., Tang, L.: Boundedness for some Schrödinger type operators on weighted Morrey spaces, J. Funct. Spaces, Art. ID 878629, 10 pp (2014)

  27. Polidoro, S., Ragusa, M.A.: Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term. Rev. Mat. Iberoam. 24, 1011–1046 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Ragusa, M.A.: Necessary and sufficient condition for a \(VMO\) function. Appl. Math. Comput. 218, 11952–11958 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Shen, Z.W.: \(L^p\) estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45, 513–546 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Song, L., Yan, L.X.: Riesz transforms associated to Schrödinger operators on weighted Hardy spaces. J. Funct. Anal. 259, 1466–1490 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton (1970)

    MATH  Google Scholar 

  32. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press, Princeton (1993)

    MATH  Google Scholar 

  33. Tang, L.: Weighted norm inequalities for Schrödinger type operators. Forum Math. 27, 2491–2532 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Taylor, M.E.: Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations. Comm. Partial Differ. Equ. 17, 1407–1456 (1992)

    MathSciNet  MATH  Google Scholar 

  35. Thangavelu, S.: Harmonic Analysis on the Heisenberg Group, Progress in Mathematics, vol. 159. Birkhäuser, Boston/Basel/Berlin (1998)

    MATH  Google Scholar 

  36. Zhao, J.M.: Littlewood-Paley and Lusin functions on nilpotent Lie groups. Bull. Sci. Math. 132, 425–438 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express his deep gratitude to the referee for his/her careful reading, valuable comments and suggestions which made this article more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Wang.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by Maria Alessandra Ragusa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H. Morrey spaces for Schrödinger operators with certain nonnegative potentials, Littlewood–Paley and Lusin functions on the Heisenberg groups. Banach J. Math. Anal. 14, 1532–1557 (2020). https://doi.org/10.1007/s43037-020-00076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43037-020-00076-9

Keywords

Mathematics Subject Classification

Navigation