Skip to main content
Log in

Lipschitz type inequalities for noncommutative perspectives of operator monotone functions in Hilbert spaces

  • Original Paper
  • Published:
Advances in Operator Theory Aims and scope Submit manuscript

Abstract

Assume that \(f:[0,\infty )\rightarrow {\mathbb {R}}\) is a continuous function. We can define the perspective \(\mathcal {P}_{f}\left( B,A\right)\) by setting

$$\begin{aligned} {\mathcal {P}}_{f}\left( B,A\right) :=A^{1/2}f\left( A^{-1/2}BA^{-1/2}\right) A^{1/2}, \end{aligned}$$

where A\(B>0.\) We show in this paper among others that

$$\begin{aligned}&\left\| {\mathcal {P}}_{f}\left( B,P\right) -{\mathcal {P}}_{f}\left( A,P\right) \right\| \\&\quad \le \frac{\left\| P\right\| ^{2}\left\| B-A\right\| }{p^{2}} \left\{ \begin{array}{ll} \left( \frac{{\mathcal {P}}_{f}\left( m_{2},p\right) -{\mathcal {P}}_{f}\left( m_{1},p\right) }{m_{2}-m_{1}}\right) &{}\text { if }m_{1}\ne m_{2}, \\ \\ f^{\prime }\left( \frac{m}{p}\right) &{} \text { if }m_{1}=m_{2}=m \end{array} \right. \end{aligned}$$

for all \(A\ge m_{1}>0,\) \(B\ge m_{2}>0\) and \(P\ge p>0\). If f is operator monotone on \([0,\infty)\), then for all \(C\ge n_{1}>0,\) \(D\ge n_{2}>0,\) \(Q>q>0\) we also have

$$\begin{aligned}&\left\| {\mathcal {P}}_{f}\left( Q,D\right) -{\mathcal {P}}_{f}\left( Q,C\right) \right\| \\&\quad \le \frac{\left\| Q\right\| ^{2}\left\| D-C\right\| }{q^{2}} \left\{ \begin{array}{ll} \left[ \frac{{\mathcal {P}}_{f}\left( q,n_{2}\right) -{\mathcal {P}}_{f}\left( q,n_{1}\right) }{n_{2}-n_{1}}\right] &{}\text { if }n_{2}\ne n_{1}, \\ \\ \left[ f\left( \frac{q}{n}\right) -\frac{q}{n}f^{\prime }\left( \frac{q}{n} \right) \right] &{}\text { if }n_{2}=n_{1}=n. \end{array} \right. \end{aligned}$$

Some applications for weighted operator geometric mean and relative operator entropy are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H., Yamagami, S.: An inequality for Hilbert–Schmidt norm. Commun. Math. Phys. 81, 89–96 (1981)

    Article  MathSciNet  Google Scholar 

  2. Bhatia, R.: First and second order perturbation bounds for the operator absolute value. Linear Algebra Appl. 208(209), 367–376 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bhatia, R.: Perturbation bounds for the operator absolute value. Linear Algebra Appl. 226(228), 639–645 (1995)

    Article  MathSciNet  Google Scholar 

  4. Bhatia, R.: Matrix analysis. Graduate Texts in Mathematics, vol. 169, p. xii+347. Springer, New York (1997). (ISBN: 0-387-94846-5)

    Google Scholar 

  5. Bhatia, R., Singh, D., Sinha, K.B.: Differentiation of operator functions and perturbation bounds. Commun. Math. Phys. 191(3), 603–611 (1998)

    Article  MathSciNet  Google Scholar 

  6. Coleman, R.: Calculus on Normed Vector Spaces. Springer, Berlin (2010)

    MATH  Google Scholar 

  7. Dragomir, S.S.: Noncommutative perspectives of operator monotone functions in Hilbert spaces. Preprint RGMIA Res. Rep. Coll. 23, Art. 118 (2020). Preprint https://arxiv.org/abs/2009.00241

  8. Effros, E.G.: A matrix convexity approach to some celebrated quantum inequalities. Proc. Natl. Acad. Sci. USA 106, 1006–1008 (2009)

    Article  MathSciNet  Google Scholar 

  9. Effros, E.G., Hansen, F.: Noncommutative perspectives. Ann. Funct. Anal. 5(2), 74–79 (2014)

    Article  MathSciNet  Google Scholar 

  10. Farforovskaya, YuB: Estimates of the closeness of spectral decompositions of self-adjoint operators in the Kantorovich–Rubinshtein metric (in Russian). Vesln. Leningrad. Gos. Univ. Ser. Mat. Mekh. Astronom. 4, 155–156 (1967)

    MathSciNet  Google Scholar 

  11. Farforovskaya, YuB: An estimate of the norm \(\left\Vert\, f\left( B\right) -f\left( A\right) \right\Vert\) for self-adjoint operators \(A\) and \(B\) (in Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. 56, 143–162 (1976)

    MathSciNet  Google Scholar 

  12. Farforovskaya, YuB, Nikolskaya, L.: Modulus of continuity of operator functions. Algebra i Analiz 20(3), 224–242 (2008). [translation in St. Petersburg Math. J. 20 (2009), no. 3, 493–506]

    MathSciNet  MATH  Google Scholar 

  13. Fujii, J.I., Kamei, E.: Uhlmann’s interpolational method for operator means. Math. Jpn. 34(4), 541–547 (1989)

    MathSciNet  MATH  Google Scholar 

  14. Fujii, J.I., Kamei, E.: Relative operator entropy in noncommutative information theory. Math. Jpn. 34(3), 341–348 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Fujii, J.I., Seo, Y.: On parametrized operator means dominated by power ones. Sci. Math. 1, 301–306 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Furuta, T.: Precise lower bound of \(f(A)-f(B)\) for \(A>B>0\) and non-constant operator monotone function \(f\) on \([0,\infty )\). J. Math. Inequal. 9(1), 47–52 (2015)

    Article  MathSciNet  Google Scholar 

  17. Heinz, E.: Beiträge zur Störungsteorie der Spektralzerlegung. Math. Ann. 123, 415–438 (1951)

    Article  MathSciNet  Google Scholar 

  18. Kato, T.: Continuity of the map \(S\rightarrow \left|S\right|\) for linear operators. Proc. Jpn. Acad. 49, 143–162 (1973)

    Article  MathSciNet  Google Scholar 

  19. Kubo, F., Ando, T.: Means of positive linear operators. Math. Ann. 246(3), 205–224 (1979/80)

  20. Löwner, K.: Über monotone MatrixFunktionen. Math. Z 38, 177–216 (1934)

    Article  MathSciNet  Google Scholar 

  21. Moslehian, M.S., Kian, M.: Non-commutative \(f\)-divergence functional. Math. Nachr. 286(14–15), 1514–1529 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Morishita, J., Sano, T., Tachibana, S.: Kwong matrices and operator monotone functions on \((0,1)\). Ann. Funct. Anal. 5(1), 121–127 (2014)

    Article  MathSciNet  Google Scholar 

  23. Nakamura, M., Umegaki, H.: A note on the entropy for operator algebras. Proc. Jpn. Acad. 37, 149–154 (1961)

    MathSciNet  MATH  Google Scholar 

  24. Nikoufar, I., Shamohammadi, M.: The converse of the Loewner–Heinz inequality via perspective. Linear Multilinear Algebras 66(2), 243–249 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for their valuable suggestions that have been implemented in the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvestru Sever Dragomir.

Additional information

Communicated by M. S. Moslehian.

To Audrey and Sienna.

This work was completed with the support of our TeX-pert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragomir, S.S. Lipschitz type inequalities for noncommutative perspectives of operator monotone functions in Hilbert spaces. Adv. Oper. Theory 6, 33 (2021). https://doi.org/10.1007/s43036-021-00130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43036-021-00130-9

Keywords

Mathematics Subject Classification

Navigation