Skip to main content
Log in

Generalized solutions for a class of nonlinear parabolic problems with irregular data in unbounded domains

  • Original Paper
  • Published:
Advances in Operator Theory Aims and scope Submit manuscript

Abstract

We consider the following nonlinear parabolic problem with singular data whose model is

$$\begin{aligned} ({\mathcal {P}}_{b})\ \left\{ \begin{aligned}&u_t-\text {div}(a(t,x,\nabla u))+a_{0}(t,x, u)=\mu \text{ in } Q:=(0,T)\times \varOmega ,\\&u(0,x)=u_{0}(x) \text{ in } \varOmega ,\ u(t,x)=0\text { on }(0,T)\times \partial \varOmega , \end{aligned}\right. \end{aligned}$$

where \(\varOmega \) is an open, possibly unbounded, subset of \({\mathbb {R}}^{N}\), \(N\ge 2\), \(T>0\), \(u_{0}\in L^{1}(\varOmega )\), and \(\mu \) is a Radon measure with bounded variation on Q. The function \(u\mapsto -\text {div}(a(t,x,\nabla u))+a_{0}(t,x,u)\) is a continuous, bounded and monotone operator acting in \(L^{p}(0,T;W^{1,p}_{0}(\varOmega ))\), \(1<p\le N\), and satisfying some growth conditions. The originality of this paper is to study the existence and uniqueness of problem \(({\mathcal {P}}_{b})\) when \(\mu \) is a general measure with additional decomposition property \(\mu =\mu _{d}+\mu _{c}\), where \(\mu _{d}\) is the “diffuse” part of \(\mu \), and \(\mu _{c}\) is “concentrated” on a set of zero parabolic “p-capacity”. The study of problem \(({\mathcal {P}}_{b})\) will be splitted in two different cases according to the boundedness of the domain \(\varOmega \) (bounded or not), and to the comportment of the solution when the singular part appears or disappears (\(\mu _{c}\ne 0\) or \(\mu _{c}=0\)): the first one consists on proving the existence of generalized (“renormalized”) solutions, and the second one is the uniqueness where the main obstacle relies on the presence of the term \(\mu _{c}\). Moreover, if \(\mu _{c}\equiv 0\), the uniqueness result is proved by assuming a strictly monotonicity property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abdellaoui, M., Azroul, E.: Renormalized solutions for nonlinear parabolic equations with general measure data. Electron. J. Differ. Equ. 132, 1–21 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Abdellaoui, M., Azroul, E.: Non-stability result of entropy solutions for nonlinear parabolic problems with singular measures. Electron. J. Elliptic Parabol. Equ. 5(1), 1–26 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Abdellaoui, M., Azroul, E., Redwane, H.: Existence results for a class of nonlinear parabolic equations of generalized porous medium type with measure data. Ricerche mat. (2020). https://doi.org/10.1007/s11587-019-00480-w

    Article  Google Scholar 

  4. Abdellaoui, M.: On some parabolic problems with measure sources. Moroccan J. Pure Appl. Anal. 5(1), 1–21 (2019)

    Google Scholar 

  5. Abdellaoui, M., Azroul, E.: Homogenization of a nonlinear parabolic problem corresponding to a Leray–Lions monotone operator with right-hand side measure. SeMA 77, 1–26 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Bogachev, V.I: Measure Theory, Vols. 1, 2. Springer, Berlin (2007)

  7. Bidaut-Véron, M.F., Chasseigne, E., Véron, L.: Initial trace of solutions of some quasilinear parabolic equations with absorption. J. Funct. Anal. 193, 140–205 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Boccardo, L., Dall’Aglio, A., Gallouët, T., Orsina, L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147, 237–258 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right-hand side measures. Commun. Partial Differ. Equ. 17(3&3), 641–655 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Boccardo, L., Gallouët, T., Orsina, L.: Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. H. Poincar Anal. Non Linéaire 13, 539–551 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Boccardo, L., Gallouët, T., Orsina, L.: Existence and nonexistence of solutions for some nonlinear elliptic equations. J. Anal. Math. 73, 203–223 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Bidaut-Véron, M.F., Nguyen, Q.-H.: Evolution equations of \(p\)-Laplace type with absorption or source terms and measure data. Commun. Contemp. Math. 17(06), 25 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Blanchard, D., Porretta, A.: Stefan problems with nonlinear diffusion and convection. J. Differ. Equ. 210(2), 383–428 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Browder, F.E.: Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains. Proc. Natl Acad. Sci. USA 74, 2659–2661 (1977)

    MathSciNet  MATH  Google Scholar 

  16. Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J.L.: An \(L^{1}\)-theory of existence and uniqueness of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22, 241–273 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Charrier, P.: Contribution à l’ébtude de problèmes d’évolution, Thèse. Univ, Bordeaux I (1978)

  18. Choquet, G.: Forme abstraite du théorème de capacitabilité. Ann. Inst. Fourier. 9, 83–89 (1959)

    MathSciNet  MATH  Google Scholar 

  19. Dal Maso, G.: \(\Gamma \)-convergence and \(\mu \)-capacities. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, Série 4, Tome 14(3), 423–464 (1987)

  20. Dal Maso, G., Malusa, A.: Some properties of reachable solutions of nonlinear elliptic equations with measure data. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 25(1-2), 375–396 (1997)

  21. Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 741–808 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Droniou, J., Prignet, A.: Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data. No DEA 14(1–2), 181–205 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Droniou, J., Porretta, A., Prignet, A.: Parabolic capacity and soft measures for nonlinear equations. Potential Anal. 19(2), 99–161 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  25. Fonseca, I., Leoni, G.: Modern methods in the calculus of variations: \(L^{p}\) spaces. Spring Monograph Math. (2007). https://doi.org/10.1007/978-0-387-69006-3

    Article  MATH  Google Scholar 

  26. Fukushima, M., Sato, K., Taniguchi, S.: On the closable part of pre-Dirichlet forms and the fine supports of underlying measures. Osaka J. Math. 28, 517–535 (1991)

    MathSciNet  MATH  Google Scholar 

  27. Federer, H., Ziemer, W.P.: The Lebesgue set of function whose distribution derivatives are \(p\)-th power summable. Indiana Univ. Math. J. 22, 139–158 (1972)

    MathSciNet  MATH  Google Scholar 

  28. Giusti, E.: Methodi diretti nel calcolo delle Variazioni. U.M.I, Bologna (1994)

    MATH  Google Scholar 

  29. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  30. Kozhevnikova, L.M.: On solutions of elliptic equations with variable exponents and measure data in \({\mathbb{R}}^{n}\) (2019). arXiv:1912.12432v1 [math.AP]

  31. Kozhevnikova, L.M.: On entropy solutions of anisotropic elliptic equations with variable nonlinearity indices. Differ. Funct. Differ. Equ. CMFD 63(3), 475–493 (2017)

    Google Scholar 

  32. Kozhevnikova, L.M.: Entropy and renormalized solutions of anisotropic elliptic equations with variable exponents of nonlinearities. Sbornik: Math. 210(3), 417–446 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Kozhevnikova, L.M.: On solutions of anisotropic elliptic equations with variable exponent and measure data. Complex Var. Elliptic Equ. 1–35(2019)

  34. Klimsiak, T., Rozkosz, A.: On the structure of diffuse measures for parabolic capacities. C. R. Acad. Sci. Paris Ser. I(357), 443–449 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaire. Dunod et Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  36. Lions, J.-L., Magnes, E.: Problèmes aux limites non homogènes et applications, vol. l. Dunod, Paris (1968)

  37. Lions, J.-L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)

    MATH  Google Scholar 

  38. Mahler, G.: Nonlinear parabolic problems in unbounded domains. Proc. R. Soc. Edinburgh Sect. A Math. 82(3–4), 201–209 (1979)

    MathSciNet  MATH  Google Scholar 

  39. Malusa, A., Porzio, M.M.: Renormalized solutions to elliptic equations with measure data in unbounded domains. Nonlinear Anal. TMA. 67, 2370–2389 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Malusa, A., Prignet, A.: Stability of renormalized solutions of elliptic equations with measure data. Atti Sem. Mat. Fis. Univ. Modena 52, 117–134 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Malusa, A.: A new proof of the stability of renormalized solutions to elliptic equations with measure data. Asymptotic Anal. 43, 111–129 (2005)

    MathSciNet  MATH  Google Scholar 

  42. Mignot, F., Puel, J.P.: Inéquations d’évolution paraboliques avec convexes dépendant du temps, Applications aux inéquations quasi-variationnelles d’évolution. Arch. Rat. Mech. Anal. 64, 59–91 (1977)

    MATH  Google Scholar 

  43. Mukminov, F.K.: Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces. Sbornik. Math. 208(8), 1187–1206 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Murat, F.: Equations elliptiques non linéaires avec second membre \(L^{1}\) ou mesure. Comptes Rendus du 26ème Congrès National d’Analyse Numérique Les Karellis, A12–A24 (1994)

  45. Pierre, M.: Equations d’évolution non linéaires, inéquations variationnelles et potentiels paraboliques. Université Paris VI, Thèse (1979)

    Google Scholar 

  46. Pierre, M.: Parabolic capacity and Sobolev spaces. SIAM J. Math. Anal. 14(3), 522–533 (1983)

    MathSciNet  MATH  Google Scholar 

  47. Pierre, M.: Représentant précis d’un potentiel parabolique. Sém. Th. du Potentiel, Univ. Paris VI, Lecture Notes in Mathematics 807, Springer, Berlin (1980)

  48. Petitta, F.: Nonlinear parabolic equations with general measure data. Ph.D. Thesis, Università di Roma, Rome (2006)

  49. Petitta, F.: Renormalized solutions of nonlinear parabolic equations with general measure data. Ann. Mat. 187, 563 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Petitta, F.: Asymptotic behavior of solutions for parabolic operators of Leray–Lions type and measure data. Adv. Differ. Equ. 12(8), 867–891 (2007)

    MathSciNet  MATH  Google Scholar 

  51. Petitta, F., Porretta, A.: On the notion of renormalized solution to nonlinear parabolic equations with general measure data. J. Elliptic Parabol. Equ. 1, 201–214 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Petitta, F.: Asymptotic behavior of solutions for linear parabolic equations with general measure data. C. R. Math. Acad. Sci. Paris 344(9), 571–576 (2007)

    MathSciNet  MATH  Google Scholar 

  53. Porretta, A.: Existence results for nonlinear parabolic equations via strong convergence of truncations. Ann. Mat. Pura ed Appl. (IV) 177, 143–172 (1999)

    MathSciNet  MATH  Google Scholar 

  54. Petitta, F., Ponce, A.C., Porretta, A.: Approximation of diffuse measures for parabolic capacities. C. R. Acad. Sci. Paris Ser. I(346), 161–166 (2008)

    MathSciNet  MATH  Google Scholar 

  55. Petitta, F., Ponce, A.C., Porretta, A.: Diffuse measures and nonlinear parabolic equations. J. Evol. Equ. 11(4), 861–905 (2011)

    MathSciNet  MATH  Google Scholar 

  56. Prignet, A.: Remarks on existence and uniqueness of solutions of elliptic problems with right hand side measures. Rend. Mat. 15, 321–337 (1995)

    MathSciNet  MATH  Google Scholar 

  57. Prignet, A.: Existence and uniqueness of entropy solutions of parabolic problems with \(L^{1}\) data. Nonlinear Anal. TMA 28, 1943–1954 (1997)

    MathSciNet  MATH  Google Scholar 

  58. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du seconde ordre à coefficientes discontinus. Ann. Inst. Fourier (Grenoble) 15, 189–258 (1965)

    MathSciNet  MATH  Google Scholar 

  59. Serrin, J.: Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18, 385–387 (1964)

    MathSciNet  MATH  Google Scholar 

  60. Zeidler, E.: Nonlinear Functional Analysis and its Applications. Springer, Heidlberg (1990)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is thankful to reviewers for informations and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Abdellaoui.

Additional information

Communicated by Guowei Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellaoui, M. Generalized solutions for a class of nonlinear parabolic problems with irregular data in unbounded domains. Adv. Oper. Theory 5, 1839–1888 (2020). https://doi.org/10.1007/s43036-020-00094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43036-020-00094-2

Keywords

Mathematics Subject Classification

Navigation