Skip to main content
Log in

Liraglutide Improves PCOS Symptoms in Rats by Targeting FDX1

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Background

Polycystic ovary syndrome (PCOS) is a gynecological endocrine disorder characterized by ovulatory disorders, hyperandrogenemia, and polycystic changes in the ovaries. FDX1 is a ferredoxin-reducing protein on human mitochondria that plays an important role in steroid anabolism. Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has recently emerged as a potential therapeutic agent for PCOS. Recent studies have suggested that FDX1 may be associated with the development of PCOS. This study aims to explore the pivotal role of FDX1 in the amelioration of PCOS through liraglutide intervention.

Materials and methods

A PCOS rat model was induced via subcutaneous DHEA injections. Following successful model establishment, the rats were treated with liraglutide combined with metformin, or with each drug individually, over a six-week period. After 6 weeks of treatment, we assessed changes in body weight, fasting blood glucose, sex hormone levels, estrous cycle regularity, ovarian morphology, FDX1 expression in ovarian tissue, and ovarian ROS levels.

Results

PCOS rats exhibited significant increases in body weight and fasting blood glucose levels, disrupted estrous cycles, and polycystic ovarian morphology. FDX1 expression was notably reduced in the ovarian tissues of PCOS rats. Treatment with liraglutide, both alone and in combination with metformin, led to improvements in body weight, fasting blood glucose, sex hormone balance, estrous cycle regularity, ovarian morphology, and ovarian ROS levels. Notably, FDX1 expression was significantly restored in all treatment groups, with the most substantial increase observed in the liraglutide-treated group.

Conclusion

This study suggests that FDX1 could serve as a potential biomarker for elucidating the underlying mechanisms of liraglutide’s therapeutic effects in PCOS management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057. https://doi.org/10.1038/nrdp.2016.57.

    Article  PubMed  Google Scholar 

  2. Walter K, What. Is Polycystic Ovary Syndrome? Jama. 2022;327(3):294.

    PubMed  Google Scholar 

  3. Hart R. PCOS and infertility. Panminerva Med. 2008;50(4):305–14.

    CAS  PubMed  Google Scholar 

  4. Johnson JE, Daley D, Tarta C, Stanciu PI. Risk of endometrial cancer in patients with polycystic ovarian syndrome: a meta–analysis. Oncol Lett. 2023;25(4):168. https://doi.org/10.3892/ol.2023.13754.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Persson S, Elenis E, Turkmen S, Kramer MS, Yong EL, Poromaa IS. Higher risk of type 2 diabetes in women with hyperandrogenic polycystic ovary syndrome. Fertil Steril. 2021;116(3):862–71.

    Article  CAS  PubMed  Google Scholar 

  6. 1016/. j.fertnstert.2021.04.018.

  7. Wekker V, van Dammen L, Koning A, Heida KY, Painter RC, Limpens J, et al. Long-term cardiometabolic disease risk in women with PCOS: a systematic review and meta-analysis. Hum Reprod Update. 2020;26(6):942–60. https://doi.org/10.1093/humupd/dmaa029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cooney LG, Dokras A. Depression and anxiety in polycystic ovary syndrome: etiology and treatment. Curr Psychiatry Rep. 2017;19(11):83. https://doi.org/10.1007/s11920-017-0834-2.

    Article  PubMed  Google Scholar 

  9. eBioMedicine. Polycystic ovary syndrome: deciphering mechanisms to facilitate management and treatment. EBioMedicine. 2023;94:104754. https://doi.org/10.1016/j.ebiom.2023.104754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Diamanti-Kandarakis E, Christakou CD, Kandaraki E, Economou FN. Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol. 2010;162(2):193–212. https://doi.org/10.1530/eje-09-0733.

    Article  CAS  PubMed  Google Scholar 

  11. McCartney CR, Marshall JC. CLINICAL PRACTICE. Polycystic ovary syndrome. N Engl J Med. 2016;375(1):54–64. https://doi.org/10.1056/NEJMcp1514916.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Velazquez EM, Mendoza S, Hamer T, Sosa F, Glueck CJ. Metformin therapy in polycystic ovary syndrome reduces hyperinsulinemia, insulin resistance, hyperandrogenemia, and systolic blood pressure, while facilitating normal menses and pregnancy. Metabolism. 1994;43(5):647–54. https://doi.org/10.1016/0026-0495(94)90209-7.

    Article  CAS  PubMed  Google Scholar 

  13. Nadkarni P, Chepurny OG, Holz GG. Regulation of glucose homeostasis by GLP-1. Prog Mol Biol Transl Sci. 2014;121:23–65. https://doi.org/10.1016/b978-0-12-800101-1.00002-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siamashvili M, Davis SN. Update on the effects of GLP-1 receptor agonists for the treatment of polycystic ovary syndrome. Expert Rev Clin Pharmacol. 2021;14(9):1081–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bednarz K, Kowalczyk K, Cwynar M, Czapla D, Czarkowski W, Kmita D, et al. The role of Glp-1 receptor agonists in insulin resistance with concomitant obesity treatment in polycystic ovary syndrome. Int J Mol Sci. 2022;23(8). https://doi.org/10.3390/ijms23084334.

  16. Nylander M, Frøssing S, Clausen HV, Kistorp C, Faber J, Skouby SO. Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: a randomized clinical trial. Reprod Biomed Online. 2017;35(1):121–7. https://doi.org/10.1016/j.rbmo.2017.03.023.

    Article  CAS  PubMed  Google Scholar 

  17. Sheftel AD, Stehling O, Pierik AJ, Elsässer HP, Mühlenhoff U, Webert H, et al. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci U S A. 2010;107(26):11775–80.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gorry A, White DM, Franks S. Infertility in polycystic ovary syndrome: focus on low-dose gonadotropin treatment. Endocrine. 2006;30(1):27–33. https://doi.org/10.1385/endo:30:1:27.

    Article  CAS  PubMed  Google Scholar 

  19. Dzafic E, Stimpfel M, Virant-Klun I. Plasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potential. J Assist Reprod Genet. 2013;30(10):1255–61.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Su YQ, Sugiura K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med. 2009;27(1):32–42. https://doi.org/10.1055/s-0028-1108008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Das M, Djahanbakhch O, Hacihanefioglu B, Saridogan E, Ikram M, Ghali L, et al. Granulosa cell survival and proliferation are altered in polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93(3):881–7. https://doi.org/10.1210/jc.2007-1650.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z, Dong H, Yang L, Yi P, Wang Q, Huang D. The role of FDX1 in granulosa cell of polycystic ovary syndrome (PCOS). BMC Endocr Disord. 2021;21(1):119. https://doi.org/10.1186/s12902-021-00775-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim EJ, Jang M, Choi JH, Park KS, Cho IH. An Improved Dehydroepiandrosterone-Induced Rat Model of Polycystic Ovary Syndrome (PCOS): post-pubertal improve PCOS’s features. Front Endocrinol (Lausanne). 2018;9:735. https://doi.org/10.3389/fendo.2018.00735.

    Article  PubMed  Google Scholar 

  24. Peng F, Hu Y, Peng S, Zeng N, Shi L. Apigenin exerts protective effect and restores ovarian function in dehydroepiandrosterone induced polycystic ovary syndrome rats: a biochemical and histological analysis. Ann Med. 2022;54(1):578–87. https://doi.org/10.1080/07853890.2022.2034933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen HR, Xu X, Li XL. Berberine exerts a protective effect on rats with polycystic ovary syndrome by inhibiting the inflammatory response and cell apoptosis. Reprod Biol Endocrinol. 2021;19(1):3. https://doi.org/10.1186/s12958-020-00684-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev. 2015;36(5):487–525. https://doi.org/10.1210/er.2015-1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cao J, Huo P, Cui K, Wei H, Cao J, Wang J, et al. Follicular fluid-derived exosomal miR-143-3p/miR-155-5p regulate follicular dysplasia by modulating glycolysis in granulosa cells in polycystic ovary syndrome. Cell Commun Signal. 2022;20(1):61. https://doi.org/10.1186/s12964-022-00876-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peng Q, Chen X, Liang X, Ouyang J, Wang Q, Ren S, et al. Metformin improves polycystic ovary syndrome in mice by inhibiting ovarian ferroptosis. Front Endocrinol (Lausanne). 2023;14:1070264. https://doi.org/10.3389/fendo.2023.1070264.

    Article  PubMed  Google Scholar 

  29. Xing J, Qiao G, Luo X, Liu S, Chen S, Ye G, et al. Ferredoxin 1 regulates granulosa cell apoptosis and autophagy in polycystic ovary syndrome. Clin Sci (Lond). 2023;137(6):453–68. https://doi.org/10.1042/cs20220408.

    Article  CAS  PubMed  Google Scholar 

  30. Ge JJ, Wang DJ, Song W, Shen SM, Ge WH. The effectiveness and safety of liraglutide in treating overweight/obese patients with polycystic ovary syndrome: a meta-analysis. J Endocrinol Invest. 2022;45(2):261–73. https://doi.org/10.1007/s40618-021-01666-6.

    Article  CAS  PubMed  Google Scholar 

  31. Xing C, Zhao H, Zhang J, He B. Effect of metformin versus metformin plus liraglutide on gonadal and metabolic profiles in overweight patients with polycystic ovary syndrome. Front Endocrinol (Lausanne). 2022;13:945609. https://doi.org/10.3389/fendo.2022.945609.

    Article  PubMed  Google Scholar 

  32. Tang Z, Xu R, Zhang Z, Shi C, Zhang Y, Yang H, et al. HIF-1α protects Granulosa cells from Hypoxia-Induced apoptosis during Follicular Development by Inducing Autophagy. Front Cell Dev Biol. 2021;9:631016. https://doi.org/10.3389/fcell.2021.631016.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Springer Nature for editing the language of a draft of this manuscript (SRHH7N9TR). We also thank the contribution of LONGTAIYINXIN Biotechnology Co., Ltd in this research.

Funding

This work was supported by the Tianjin Natural Science Foundation (Grant No. 21JCYBJC01670).

Author information

Authors and Affiliations

Authors

Contributions

F.W. and Z.H. managed and supervised the research. S.J. and H. Y. completed experiments and wrote the manuscript. Y.J., W.W., Y.D., H.F., N.T. directed the work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhimin Hou or Fang Wang.

Ethics declarations

Ethical approval

The animal experiment has been reviewed and approved by the Experimental Animal Ethics Committee of Tianjin Medical University Chu Hsien-I Memorial Hospital (DXBYY-IACUC-2022064).

Consent to Participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Yang, H., Ji, Y. et al. Liraglutide Improves PCOS Symptoms in Rats by Targeting FDX1. Reprod. Sci. (2024). https://doi.org/10.1007/s43032-024-01503-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43032-024-01503-0

Keywords

Navigation