Skip to main content
Log in

Effect of Five Different Antioxidants on the Effectiveness of Goat Semen Cryopreservation

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 07 February 2024

This article has been updated

Abstract

The effective combination of semen cryopreservation and artificial insemination has a positive effect on the conservation of germplasm resources, production and breeding, etc. However, during the process of semen cryopreservation, the sperm cells are very susceptible to different degrees of physical, chemical, and oxidative stress damage. Oxidative damage is the most important factor that reduces semen quality, which is affected by factors such as dilution equilibrium, change of osmotic pressure, cold shock, and enzyme action during the freezing–thawing process, which results in the aggregation of a large amount of reactive oxygen species (ROS) in sperm cells and affects the quality of semen after thawing. Therefore, the method of adding antioxidants to semen cryoprotective diluent is usually used to improve the effect of semen cryopreservation. The aim of this experiment was to investigate the effects of adding five antioxidants (GLP, Mito Q, NAC, SLS, and SDS) to semen cryoprotection diluent on the cryopreservation effect of semen from Saanen dairy goats. The optimal preservation concentrations were screened by detecting sperm viability, plasma membrane integrity, antioxidant capacity, and acrosomal enzyme activities after thawing, and the experimental results were as follows: the optimal concentrations of GLP, Mito Q, NAC, SLS, and SDS added to semen cryopreservation diluent at different concentrations were 0.8 mg/mL, 150 nmol/L, 0.6 mg/mL, 0.15 mg/ mL, 0.6 mg/mL, and 0.15 mg/mL. The optimal concentrations of the five antioxidants were added to the diluent and analyzed after 1 week of cryopreservation, and it was found that sperm viability, plasma membrane integrity, and mitochondrial activity were significantly enhanced after thawing compared with the control group (P < 0.05), and their antioxidant capacity was significantly enhanced (P < 0.05). Therefore, the addition of the above five antioxidants to goat sperm cryodilution solution had a better enhancement of sperm cryopreservation. This study provides a useful reference for exploring the improvement of goat semen cryoprotection effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data are available within the manuscript.

Change history

References 

  1. Alipour-Jenaghard P, Daghigh-Kia H, Masoudi R. Preservationof the quality and fertility potential of post-thawed rooster sperm using MitoQ. Theriogenology. 2023;208:165–70. https://doi.org/10.1016/j.theriogenology.2023.06.014.

    Article  CAS  PubMed  Google Scholar 

  2. Kolyada MN, Osipova VP, Berberova NT. Use of cryoprotectors and antioxidants in sturgeon semen cryopreservation. Cryobiology. 2023;111:30–9. https://doi.org/10.1016/j.cryobiol.2023.02.003.

    Article  CAS  PubMed  Google Scholar 

  3. Khalil WA, Hassan MAE, Attia KAA, El-Metwaly HA, El-Harairy MA, Sakr AM, Abdelnour SA. Effect of olive, flaxseed, and grape seed nano-emulsion essential oils on semen buffalo freezability. Theriogenology. 2023;212:9–18. https://doi.org/10.1016/j.theriogenology.2023.08.021.

    Article  CAS  PubMed  Google Scholar 

  4. Peris-Frau P, Martín-Maestro A, Iniesta-Cuerda M, Sánchez-Ajofrín I, Cesari A, Garde JJ, et al. Cryopreservation of ram sperm alters the dynamic changes associated with in vitro capacitation. Theriogenology. 2020;145:100–8. https://doi.org/10.1016/j.theriogenology.2020.01.046.

  5. Xu D, Wu L, Yang L, Liu D, Chen H, Geng G, Li Q. Rutin protects boar sperm from cryodamage via enhancing the antioxidative defense. Anim Sci J. 2020;91(1):e13328. https://doi.org/10.1111/asj.13328.

    Article  CAS  PubMed  Google Scholar 

  6. Mittler R. ROS are good. Trends Plant Sci. 2017;22(1):11–9. https://doi.org/10.1016/j.tplants.2016.08.002.

    Article  CAS  PubMed  Google Scholar 

  7. Zribi N, Feki Chakroun N, El Euch H, Gargouri J, Bahloul A, Ammar KL. Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil Steril. 2010;93(1):159–66. https://doi.org/10.1016/j.fertnstert.2008.09.038.

    Article  CAS  PubMed  Google Scholar 

  8. Bisht S, Faiq M, Tolahunase M, Dada R. Oxidative stress and male infertility. Nat Rev Urol. 2017;14(8):470–85. https://doi.org/10.1038/nrurol.2017.69.

    Article  CAS  PubMed  Google Scholar 

  9. Sapanidou V, Tsantarliotou MP, Lavrentiadou SN. A review of the use of antioxidants in bovine sperm preparation protocols. Anim Reprod Sci. 2023;251:107215. https://doi.org/10.1016/j.anireprosci.2023.107215.

    Article  CAS  PubMed  Google Scholar 

  10. Snieckute G, Ryder L, Vind AC, Wu Z, Arendrup FS, Stoneley M, et al. ROS-induced ribosome impairment underlies ZAKalpha-mediated metabolic decline in obesity and aging. Science. 2023;382(6675): eadf3208. https://doi.org/10.1126/science.adf3208.

  11. Sadeghi N, Boissonneault G, Tavalaee M, Nasr-Esfahani MH. Oxidative versus reductive stress: a delicate balance for sperm integrity. Syst Biol Reprod Med. 2023;69(1):20–31. https://doi.org/10.1080/19396368.2022.2119181.

    Article  PubMed  Google Scholar 

  12. Gadea J, Molla M, Selles E, Marco MA, Garcia-Vazquez FA, Gardon JC. Reduced glutathione content in human sperm is decreased after cryopreservation: effect of the addition of reduced glutathione to the freezing and thawing extenders. Cryobiology. 2011;62(1):40–6. https://doi.org/10.1016/j.cryobiol.2010.12.001.

    Article  CAS  PubMed  Google Scholar 

  13. Kalthur G, Adiga SK, Upadhya D, Rao S, Kumar P. Effect of cryopreservation on sperm DNA integrity in patients with teratospermia. Fertil Steril. 2008;89(6):1723–7. https://doi.org/10.1016/j.fertnstert.2007.06.087.

    Article  PubMed  Google Scholar 

  14. Wang YD, Zhang Y, Sun B, Leng XW, Li YJ, Ren LQ. Cardioprotective effects of rutin in rats exposed to pirarubicin toxicity. J Asian Nat Prod Res. 2018;20(4):361–73. https://doi.org/10.1080/10286020.2017.1394292.

    Article  CAS  PubMed  Google Scholar 

  15. Lu J, He R, Sun P, Zhang F, Linhardt RJ, Zhang A. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int J Biol Macromol. 2020;150:765–74. https://doi.org/10.1016/j.ijbiomac.2020.02.035.

    Article  CAS  PubMed  Google Scholar 

  16. Guo J, Yuan C, Huang M, Liu Y, Chen Y, Liu C, Chen Y. Ganoderma lucidum-derived polysaccharide enhances coix oil-based microemulsion on stability and lung cancer-targeted therapy. Drug Deliv. 2018;25(1):1802–10. https://doi.org/10.1080/10717544.2018.1516006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kang Q, Chen S, Li S, Wang B, Liu X, Hao L, Lu J. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. Int J Biol Macromol. 2019;124:1137–44. https://doi.org/10.1016/j.ijbiomac.2018.11.215.

    Article  CAS  PubMed  Google Scholar 

  18. Mishra J, Rajput R, Singh K, Puri S, Goyal M, Bansal A, Misra K. Antibacterial natural peptide fractions from Indian Ganoderma lucidum. Int J Pept Res Ther. 2018;24(4):543–54. https://doi.org/10.1007/s10989-017-9643-z.

    Article  CAS  Google Scholar 

  19. Wang T, Chen T, Xiao J, Xiao G, Lin Y, Wu J, Li Z. Progress of functional research on the polysaccharide activity of Ganoderma lucidum. Edible Fungi China. 2022;4141:7–16.

    Google Scholar 

  20. Kang L, Zhao J, Deng X, Cheng C, Liu G, Zhang Y, Guo Y, Xing K, Ni H. Research progress of antioxidants in cryopreservation of porcine semen. Swine Industry Science. 2020;37:44–7.

    Google Scholar 

  21. Rodriguez-Cuenca S, Cocheme HM, Logan A, Abakumova I, Prime TA, Rose C, et al. Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Free Radic Biol Med. 2010;48(1):161–72. https://doi.org/10.1016/j.freeradbiomed.2009.10.039.

  22. Solesio ME, Prime TA, Logan A, Murphy MP, Del Mar A-JM, Jordan J, Galindo MF. The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson’s disease. Biochim Biophys Acta. 2013;1832(1):174–82. https://doi.org/10.1016/j.bbadis.2012.07.009.

    Article  CAS  PubMed  Google Scholar 

  23. Fang L, Bai CL, Chen YH, Dai J, Xiang Y, Ji XP, et al. Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish. Cryobiology. 2014;69(3):386–93. https://doi.org/10.1016/j.cryobiol.2014.09.005.

  24. Asadzadeh N, Abdollahi Z, Esmaeilkhanian S, Masoudi R. Fertility and flow cytometry evaluations of ram frozen semen in plant-based extender supplemented with Mito-TEMPO. Anim Reprod Sci. 2021;233:106836. https://doi.org/10.1016/j.anireprosci.2021.106836.

  25. Masoudi R, Asadzadeh N, Sharafi M. Effects of freezing extender supplementation with mitochondria-targeted antioxidant Mito-TEMPO on frozen-thawed rooster semen quality and reproductive performance. Anim Reprod Sci. 2021;225:106671. https://doi.org/10.1016/j.anireprosci.2020.106671.

  26. Tiwari S, Mohanty TK, Bhakat M, Kumar N, Baithalu RK, Nath S, et al. Comparative evidence support better antioxidant efficacy of mitochondrial-targeted (Mitoquinone) than cytosolic (Resveratrol) antioxidant in improving in-vitro sperm functions of cryopreserved buffalo (Bubalus bubalis) semen. Cryobiology. 2021;101:125–34. https://doi.org/10.1016/j.cryobiol.2021.04.007.

  27. Li YH, Liang W, Han YL, Zhao WJ, Wang SY, Qin C. Triterpenoids and polysaccharides from Ganoderma lucidum improve the histomorphology and function of testes in middle-aged male mice by alleviating oxidative stress and cellular apoptosis. Nutrients. 2022;14(22):4733. https://doi.org/10.3390/nu14224733.

  28. Comhaire FH, Christophe AB, Zalata AA, Dhooge WS, Mahmoud AM, Depuydt CE. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fatty Acids. 2000;63(3):159–65. https://doi.org/10.1054/plef.2000.0174.

    Article  CAS  PubMed  Google Scholar 

  29. Moreira SSJ, Silva AM, Pereira AG, Santos RP, Dantas MRT, Souza-Júnior JBF, Snoeck PPN, Silva AR. Effect of detergents based on sodium dodecyl sulfate on functional metrics of frozen-thawed collared peccary (Pecari tajacu) semen. Animals (Basel). 2023;13(3):451. https://doi.org/10.3390/ani13030451.

  30. Sabri H, Derakhshan Barjoei MM, Azarm A, Sadighnia N, Shakiba R, Aghebati G, et al. The yin and yang of sodium lauryl sulfate use for oral and periodontal health: a literature review. J Dent (Shiraz). 2023;24(3):262–76. https://doi.org/10.30476/dentjods.2022.95108.1836.

  31. Singh P, Sharma D, Singhal S, Kumar A, Singh AK, Honparkhe M. Sodium dodecyl sulphate,-octyl β-D glucopyranoside and 4-methoxy phenyl β-D glucopyranoside effect on post-thaw sperm motion and viability traits of Murrah buffalo (Bubalus bubalis) bulls. Cryobiology. 2022;107:1–12. https://doi.org/10.1016/j.cryobiol.2022.07.001.

    Article  CAS  PubMed  Google Scholar 

  32. Wang SP, Zhai YH, Lu CM, Cui YX, Xu GY, Wang XS. Decreased expression of CatSper1 in the sperm of varicocele rats and protective effect of L-carnitine. Zhonghua Nan Ke Xue. 2019;25(11):978–83. https://www.ncbi.nlm.nih.gov/pubmed/32233230

    PubMed  Google Scholar 

  33. Bloch A, Rogers EJ, Nicolas C, Martin-Denavit T, Monteiro M, Thomas D, et al. Detailed cell-level analysis of sperm nuclear quality among the different hypo-osmotic swelling test (HOST) classes. J Assist Reprod Gen. 2021;38(9):2491–9. https://doi.org/10.1007/s10815-021-02232-y.

  34. Liu C, Feng HY, Han JY, Zhou H, Yuan LW, Pan HS, et al. Effect of L-proline on sperm quality during cryopreservation of boar semen. Anim Reprod Sci. 2023;258:107359. https://doi.org/10.1016/j.anireprosci.2023.107359.

  35. Peker Akalin P, Bucak MN, Güngör S, Başpinar N, Çoyan K, Dursun S, et al. Influence of lycopene and cysteamine on sperm and oxidative stress parameters during liquid storage of ram semen at 5 degrees C. Small Rumin Res. 2016;137:117–23. https://doi.org/10.1016/j.smallrumres.2016.03.017.

  36. Caamaño JN, Santiago-Moreno J, Martínez-Pastor F, Tamargo C, Salman A, Feznández A, et al. Use of the flavonoid taxifolin for sperm cryopreservation from the threatened Bermeya goat breed. Theriogenology. 2023;206:18–27. https://doi.org/10.1016/j.theriogenology.2023.05.004.

  37. Oldenhof H, Wolkers WF, Sieme H. Cryopreservation of semen from domestic livestock: bovine, equine, and porcine sperm. Methods Mol Biol. 2021;2180:365–77. https://doi.org/10.1007/978-1-0716-0783-1_15.

    Article  CAS  PubMed  Google Scholar 

  38. Paez JDM, Suarez AU, Betancur GR. Donkey semen cryopreservation: alternatives with permeable, non-permeable cryoprotectants and seminal plasma. Reprod Domest Anim. 2023;58(4):486–95. https://doi.org/10.1111/rda.14309.

    Article  CAS  Google Scholar 

  39. Yánez-Ortiz I, Catalán J, Rodríguez-Gil JE, Miró J, Yeste M. Advances in sperm cryopreservation in farm animals: cattle, horse, pig and sheep. Anim Reprod Sci. 2022;246:106904. https://doi.org/10.1016/j.anireprosci.2021.106904.

  40. Yang S, Fan B, Chen XH, Meng ZN. Effects of supplementation of cryopreservation media with cysteine on the post-thaw quality and fertility of brown-marbled grouper (Epinephelus fuscoguttatus) spermatozoa. Theriogenology. 2023;210:62–7. https://doi.org/10.1016/j.theriogenology.2023.07.016.

    Article  CAS  PubMed  Google Scholar 

  41. Hincha DK, Popova AV, Cacela C. Effects of sugars on the stability and structure of lipid membranes during drying. Advances in Planar Lipid Bilayers and Liposomes. 2006;3:189–217. https://doi.org/10.1016/S1554-4516(05)03006-1.

    Article  CAS  Google Scholar 

  42. Varela E, Rojas M, Restrepo G. Membrane stability and mitochondrial activity of bovine sperm frozen with low-density lipoproteins and trehalose. Reprod Domest Anim. 2020;55(2):146–53. https://doi.org/10.1111/rda.13599.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu Z, Fan X, Pan Y, Lu Y, Zeng W. Trehalose improves rabbit sperm quality during cryopreservation. Cryobiology. 2017;75:45–51. https://doi.org/10.1016/j.cryobiol.2017.02.006.

    Article  CAS  PubMed  Google Scholar 

  44. Wang DY, Liu YH, Zhao W. The adjuvant effects on vaccine and the immunomodulatory mechanisms of polysaccharides from traditional Chinese medicine. Front Mol Biosci. 2021;8:655570. https://doi.org/10.3389/fmolb.2021.655570.

  45. Shi M, Zhang Z, Yang Y. Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide (GLP). Carbohydr Polym. 2013;95(1):200–6. https://doi.org/10.1016/j.carbpol.2013.02.081.

    Article  CAS  PubMed  Google Scholar 

  46. Ben Saad R, Ben Romdhane W, Baazaoui N, Bouteraa MT, Chouaibi Y, Mnif W, et al. Functional characterization of Lobularia maritima LmTrxh2 gene involved in cold tolerance in tobacco through alleviation of ROS damage to the plasma membrane. Int J Mol Sci. 2023;24(3):3030. https://doi.org/10.3390/ijms24033030.

  47. Nasiri K, Akbari A, Nimrouzi M, Ruyvaran M, Mohamadian A. Safflower seed oil improves steroidogenesis and spermatogenesis in rats with type II diabetes mellitus by modulating the genes expression involved in steroidogenesis, inflammation and oxidative stress. J Ethnopharmacol. 2021;275:114139. https://doi.org/10.1016/j.jep.2021.114139.

    Article  CAS  PubMed  Google Scholar 

  48. Ismail H, Shakkour Z, Tabet M, Abdelhady S, Kobaisi A, Abedi R, et al. Traumatic brain injury: Oxidative stress and novel anti-oxidants such as mitoquinone and edaravone. Antioxidants. 2020;9(10):943. https://doi.org/10.3390/antiox9100943.

  49. Lv S, Fu L, Fan W, Zhang S, Wu C, Xu J, Dai J, Zhang D. Protective effect of mitochondria-targeted antioxidant mitoquinone on the damage of Hu sheep frozen sperm. Acta Veterinaria et Zootechnica Sinica. 2019;50(12):2554–9.

    Google Scholar 

  50. Liu L, Wang MJ, Yu TH, Cheng Z, Li M, Guo QW. Mitochondria-targeted antioxidant Mitoquinone protects post-thaw human sperm against oxidative stress injury. Zhonghua Nan Ke Xue. 2016;22(3):205–11.

    PubMed  Google Scholar 

  51. Zhang RX, Dong HM, Zhao PP, Shang CM, Qi H, Ma YJ, et al. Resveratrol and lycium barbarum polysaccharide improve Qinling giant panda (Ailuropoda melanoleuca Qinlingensis) sperm quality during cryopreservation. BMC Vet Res. 2022;18:23. https://doi.org/10.1186/s12917-021-03122-2.

  52. Sarosiek B, Dryl K, Kowalski RK, Palińska-Żarska K, Żarski D. Optimalisation of the activation medium and effect of inhibiting activities of acid phosphatase, lactate dehydrogenase and beta-N-acetylglucosaminidase on the fertilisation success of Eurasian perch (Perca fluviatilis L.). Animals (Basel). 2022;12:307. https://doi.org/10.3390/ani12030307.

  53. Kumar P, Liu C, Suliburk J, Hsu JW, Muthupillai R, Jahoor F, et al. Supplementing glycine and N-acetylcysteine (GlyNAC) in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, physical function, and aging hallmarks: a randomized clinical trial. J Gerontol A Biol Sci Med Sci. 2023;78(1):75–89. https://doi.org/10.1093/gerona/glac135.

  54. Bhardwaj M, Lee JJ, Versace AM, Harper SL, Goldman AR, Crissey MAS, et al. Lysosomal lipid peroxidation regulates tumor immunity. J Clin Investig. 2023;133(8):e164596. https://doi.org/10.1172/JCI164596.

  55. Szymanski M, Domaracki P, Szymanska A, Wandtke T, Szyca R, Brycht Ł, et al. The role and place of antioxidants in the treatment of male infertility caused by varicocele. J Clin Med. 2022;11(21):6391. https://doi.org/10.3390/jcm11216391.

  56. Abedi B, Tayefi-Nasrabadi H, Kianifard D, Basaki M, Shahbazfar AA, Piri A, et al. The effect of co-administration of artemisinin and N-acetyl cysteine on antioxidant status, spermatological parameters and histopathology of testis in adult male mice. Horm Mol Biol Clin Investig. 2023;44(2):207–14. https://doi.org/10.1515/hmbci-2022-0050.

  57. Zhang X, Hao H, Ma K, Pang H, Li X, Tian T, et al. The role and mechanism of unfolded protein response signaling pathway in methylmercury-induced apoptosis of mouse spermatocytes germ cell-2 cells. Environ Toxicol. 2023;38(2):472–82. https://doi.org/10.1002/tox.23684.

  58. Cojkic A, Hansson I, Johannisson A, Morrell JM. Effect of some plant-based substances on microbial content and sperm quality parameters of bull semen. Int J Mol Sci. 2023;24(4):3435. https://doi.org/10.3390/ijms24043435.

  59. Abdelnour SA, Sindi RA, Abd El-Hack ME, Khalifa NE, Khafaga AF, Noreldin AE, et al. Quercetin: putative effects on the function of cryopreserved sperms in domestic animals. Reprod Domest Anim. 2023;58(2):191–206. https://doi.org/10.1111/rda.14291.

  60. Katiyar R, Ghosh SK, Karikalan M, Kumar A, Pande M, Gemeda AI, et al. An evidence of Humanin-like peptide and Humanin mediated cryosurvival of spermatozoa in buffalo bulls. Theriogenology. 2022;194:13–26. https://doi.org/10.1016/j.theriogenology.2022.09.013.

  61. Ahmed H, Jahan S, Ijaz MU, Riaz M, Ullah F, Saqib NU. The ameliorating effects of crocetin on frozen-thawed quality, and fertility via attenuating oxidative status of bubaline spermatozoa. Cryobiology. 2022;107:42–7. https://doi.org/10.1016/j.cryobiol.2022.05.004.

    Article  CAS  PubMed  Google Scholar 

  62. Partyka A, Babapour A, Mikita M, Adeniran S, Niżański W. Lipid peroxidation in avian semen. Pol J Vet Sci. 2023;26(3):497–509. https://doi.org/10.24425/pjvs.2023.145050.

  63. Ahmad MF. Ganoderma lucidum: persuasive biologically active constituents and their health endorsement. Biomed Pharmacother. 2018;107:507–19. https://doi.org/10.1016/j.biopha.2018.08.036.

    Article  CAS  PubMed  Google Scholar 

  64. Akal E. Evaluation of sperm counting accuracy on computer- assisted sperm analysis with GoldCyto® slides and glass slides. Front Vet Sci. 2023;10:1283128. https://doi.org/10.3389/fvets.2023.1283128.

  65. Atici O, Nalbantoglu B. Antifreeze proteins in higher plants. Phytochemistry. 2003;64(7):1187–96. https://doi.org/10.1016/s0031-9422(03)00420-5.

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Cai K, Li J, Dinnyes A, Ji W. Comparative studies with six extenders for sperm cryopreservation in the cynomolgus monkey (Macaca fascicularis) and rhesus monkey (Macaca mulatta). Am J Primatol. 2006;68(1):39–49. https://doi.org/10.1002/ajp.20205.

    Article  CAS  PubMed  Google Scholar 

  67. Partyka A, Lukaszewicz E, Nizanski W. Lipid peroxidation and antioxidant enzymes activity in avian semen. Anim Reprod Sci. 2012;134(3–4):184–90. https://doi.org/10.1016/j.anireprosci.2012.07.007.

    Article  CAS  PubMed  Google Scholar 

  68. Partyka A, Niżański W. Advances in storage of poultry semen. Anim Reprod Sci. 2022;246:106921. https://doi.org/10.1016/j.anireprosci.2021.106921.

  69. Serafini S, O’Flaherty C. Redox regulation to modulate phosphorylation events in human spermatozoa. Antioxid Redox Signal. 2022;37(7–9):437–50. https://doi.org/10.1089/ars.2021.0117.

    Article  CAS  PubMed  Google Scholar 

  70. Smith RA, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci. 2010;1201:96–103. https://doi.org/10.1111/j.1749-6632.2010.05627.x.

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Surai PF, Wishart GJ, Maldjian A, Noble RC, Sparks NH. Lipid peroxidation in avian semen: protective effect of seminal plasma. Br Poult Sci. 1998;39 Suppl:S57–8. https://doi.org/10.1080/00071669888403.

  72. Veena RK, Janardhanan KK. Polysaccharide-protein complex isolated from fruiting bodies and cultured mycelia of Lingzhi or Reishi medicinal mushroom, (Agaricomycetes), attenuates doxorubicin induced oxidative stress and myocardial injury in rats. Int J Med Mushrooms. 2022;24(2):31–40.

    Article  PubMed  Google Scholar 

  73. Yeste M. Sperm cryopreservation update: cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology. 2016;85(1):47–64. https://doi.org/10.1016/j.theriogenology.2015.09.047.

Download references

Acknowledgements

All of the authors would like to express their gratitude and extend their appreciation to their respective institutes and universities.

Funding

This study was supported by the Shaanxi Provincial Key Research and Development Program (No. 2018ZDXM-NY-040).

Author information

Authors and Affiliations

Authors

Contributions

Xiaohua Yi, Yanbo Qiu, Xiaoqin Tang: conceptualization; data curation; formal analysis; investigation; methodology; software; validation; writing—original draft; writing—review and editing.Yichen Lei, Yun Pan, Sayed Haidar Abbas Raza: conceptualization; data curation; formal analysis; investigation; methodology; software; validation; review and editing. Norah A. Althobaiti, Aishah E. Albalawi, Waleed Al Abdulmonem, Raafat T. M. Makhlof, Mohammad A. Alsaad: formal analysis; writing—review and editing software; software; methodology; visualization. Yu Zhang: writing—review and editing; software; methodology. Xiuzhu Sun: conceptualization; funding acquisition; project administration; resources; supervision; visualization; writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiuzhu Sun.

Ethics declarations

Ethics Approval

The Committee approved the procedures for animal handling for experiments of Experimental Animal Management at Northwest A&F University, China (protocol number: NWAFU2022-019). Moreover, all applicable rules and regulation of the organization and government were followed regarding the ethical use of experimental animals.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Qiu, Y., Tang, X. et al. Effect of Five Different Antioxidants on the Effectiveness of Goat Semen Cryopreservation. Reprod. Sci. (2024). https://doi.org/10.1007/s43032-024-01452-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43032-024-01452-8

Keywords

Navigation