Skip to main content

Advertisement

Log in

Extracellular Vesicles: the Next Frontier in Pregnancy Research

  • Pregnancy: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Extracellular vehicles (EVs) have been involved in several aspects of pregnancy, including endometrial receptivity, embryo implantation, and embryo-maternal communication showing them associated with pregnancy disorders, such as preeclampsia, gestational diabetes mellitus, and preterm birth. Further research is warranted to fully comprehend the exact pathophysiological roles of EVs and to develop new therapies targeting EVs thereby improving pregnancy outcomes. Herein, we review the recent knowledge on the multifaceted roles of EVs during pregnancy and address the majority of the molecular interactions between EVs, maternal, and fetal cells with an emphasis on disorders of pregnancy under the influence of EVs. Moreover, we also discuss its applications in clinical trials followed by prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Kurian NK, Modi D. Extracellular vesicle mediated embryo-endometrial cross talk during implantation and in pregnancy. J Assist Reprod Genet. 2019;36(2):189–98.

    PubMed  Google Scholar 

  2. Chiarello DI, Salsoso R, Toledo F, Mate A, Vázquez CM, Sobrevia L. Foetoplacental communication via extracellular vesicles in normal pregnancy and preeclampsia. Mol Asp Med. 2018;60:69–80.

    Google Scholar 

  3. Ghafourian M, Mahdavi R, Akbari Jonoush Z, Sadeghi M, Ghadiri N, Farzaneh M, et al. The implications of exosomes in pregnancy: emerging as new diagnostic markers and therapeutics targets. Cell Commun Signal. 2022;20(1):1–19.

    Google Scholar 

  4. Buca D, Bologna G, D’Amico A, Cugini S, Musca F, Febbo M, et al. Extracellular vesicles in feto–maternal crosstalk and pregnancy disorders. Int J Mol Sci. 2020;21(6):2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Condrat CE, Varlas VN, Duică F, Antoniadis P, Danila CA, Cretoiu D, et al. Pregnancy-related extracellular vesicles revisited. Int J Mol Sci. 2021;22(8):3904.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gurunathan S, Kang M-H, Qasim M, Khan K, Kim J-H. Biogenesis, membrane trafficking, functions, and next generation nanotherapeutics medicine of extracellular vesicles. Int J Nanomedicine. 2021;16:3357.

    PubMed  PubMed Central  Google Scholar 

  7. Larios J, Mercier V, Roux A, Gruenberg J. ALIX- and ESCRT-III–dependent sorting of tetraspanins to exosomes. J Cell Biol. 2020;219(3):e201904113.

  8. Sagini K, Costanzi E, Emiliani C, Buratta S, Urbanelli L. Extracellular vesicles as conveyors of membrane-derived bioactive lipids in immune system. Int J Mol Sci. 2018;19(4):1227.

    PubMed  PubMed Central  Google Scholar 

  9. Mobarak H, Heidarpour M, Lolicato F, Nouri M, Rahbarghazi R, Mahdipour M. Physiological impact of extracellular vesicles on female reproductive system; highlights to possible restorative effects on female age-related fertility. Biofactors. 2019;45(3):293–303.

    CAS  PubMed  Google Scholar 

  10. Nakahara A, Nair S, Ormazabal V, Elfeky O, Garvey CE, Longo S, et al. Circulating placental extracellular vesicles and their potential roles during pregnancy. Ochsner J. 2020;20(4):439–45.

    PubMed  PubMed Central  Google Scholar 

  11. Jiang N-X, Li X-L. The complicated effects of extracellular vesicles and their cargos on embryo implantation. Front Endocrinol. 2021;12:681266.

    Google Scholar 

  12. Bauersachs S, Mermillod P, Almiñana C. The oviductal extracellular vesicles’ RNA cargo regulates the bovine embryonic transcriptome. Int J Mol Sci. 2020;21(4):1303.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. James-Allan LB, Rosario FJ, Barner K, Lai A, Guanzon D, McIntyre HD, et al. Regulation of glucose homeostasis by small extracellular vesicles in normal pregnancy and in gestational diabetes. FASEB J. 2020;34(4):5724–39.

    CAS  PubMed  Google Scholar 

  14. Das M, Kale V. Extracellular vesicles: mediators of embryo-maternal crosstalk during pregnancy and a new weapon to fight against infertility. Eur J Cell Biol. 2020;99(8):151125.

    CAS  PubMed  Google Scholar 

  15. Nair S, Salomon C. Extracellular vesicles and their immunomodulatory functions in pregnancy. Springer; 2018.

    Google Scholar 

  16. Shekibi M, Heng S, Nie G. MicroRNAs in the regulation of endometrial receptivity for embryo implantation. Int J Mol Sci. 2022;23(11):6210.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gurung S, Greening DW, Catt S, Salamonsen L, Evans J. Exosomes and soluble secretome from hormone-treated endometrial epithelial cells direct embryo implantation. Mol Hum Reprod. 2020;26(7):510–20.

    CAS  PubMed  Google Scholar 

  18. Evans J, Rai A, Nguyen HPT, Poh QH, Elglass K, Simpson RJ, et al. Human endometrial extracellular vesicles functionally prepare human trophectoderm model for implantation: understanding bidirectional maternal-embryo communication. Proteomics. 2019;19(23):1800423.

    CAS  Google Scholar 

  19. Tan Q, Shi S, Liang J, Zhang X, Cao D, Wang Z. MicroRNAs in small extracellular vesicles indicate successful embryo implantation during early pregnancy. Cells. 2020;9(3):645.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu C, Yao W, Yao J, Li L, Yang L, Zhang H, et al. Endometrial extracellular vesicles from women with recurrent implantation failure attenuate the growth and invasion of embryos. Fertil Steril. 2020;114(2):416–25.

    CAS  PubMed  Google Scholar 

  21. Luddi A, Zarovni N, Maltinti E, Governini L, De Leo V, Cappelli V, et al. Clues to non-invasive implantation window monitoring: isolation and characterisation of endometrial exosomes. Cells. 2019;8(8):811.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ashary N, Tiwari A, Modi D. Embryo implantation: war in times of love. Endocrinology. 2018;159(2):1188–98.

    CAS  PubMed  Google Scholar 

  23. Hemmatzadeh M, Shomali N, Yousefzadeh Y, Mohammadi H, Ghasemzadeh A, Yousefi M. MicroRNAs: small molecules with a large impact on pre-eclampsia. J Cell Physiol. 2020;235(4):3235–48.

    CAS  PubMed  Google Scholar 

  24. Balaguer N, Moreno I, Herrero M, Gonzáléz-Monfort M, Vilella F, Simón C. MicroRNA-30d deficiency during preconception affects endometrial receptivity by decreasing implantation rates and impairing fetal growth. Am J Obstet Gynecol. 2019;221(1):46–e1.

    Google Scholar 

  25. Godakumara K, Ord J, Lättekivi F, Dissanayake K, Viil J, Boggavarapu NR, et al. Trophoblast derived extracellular vesicles specifically alter the transcriptome of endometrial cells and may constitute a critical component of embryo-maternal communication. Reprod Biol Endocrinol. 2021;19(1):1–14.

    Google Scholar 

  26. Es-Haghi M, Godakumara K, Häling A, Lättekivi F, Lavrits A, Viil J, et al. Specific trophoblast transcripts transferred by extracellular vesicles affect gene expression in endometrial epithelial cells and may have a role in embryo-maternal crosstalk. Cell Commun Signal. 2019;17(1):1–18.

    Google Scholar 

  27. Capra E, Lange-Consiglio A. The biological function of extracellular vesicles during fertilization, early embryo—maternal crosstalk and their involvement in reproduction: review and overview. Biomolecules. 2020;10(11):1510.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pathare ADS, Loid M, Saare M, Gidlöf SB, Zamani Esteki M, Acharya G, et al. Endometrial receptivity in women of advanced age: an underrated factor in infertility. Hum Reprod Update. 2023;29(6):773–93.

  29. Saribas GS, Ozogul C, Tiryaki M, Pinarli FA, Kilic SH. Effects of uterus derived mesenchymal stem cells and their exosomes on Asherman’s syndrome. Acta Histochem. 2020;122(1):151465.

    CAS  PubMed  Google Scholar 

  30. Zhao Y, Tao M, Wei M, Du S, Wang H, Wang X. Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome (PCOS). Artif Cells Nanomed Biotechnol. 2019;47(1):3804–13.

    CAS  PubMed  Google Scholar 

  31. Zhang A, Wang G, Jia L, Su T, Zhang L. Exosome-mediated microRNA-138 and vascular endothelial growth factor in endometriosis through inflammation and apoptosis via the nuclear factor-κB signaling pathway. Int J Mol Med. 2019;43(1):358–70.

    PubMed  Google Scholar 

  32. Zhang L, Li HH, Yuan M, Li D, Wang GY. Exosomal miR-22-3p derived from peritoneal macrophages enhances proliferation, migration, and invasion of ectopic endometrial stromal cells through regulation of the SIRT1/NF-κB signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(2):571–80.

    CAS  PubMed  Google Scholar 

  33. Song Y, Wang M, Tong H, Tan Y, Hu X, Wang K, et al. Plasma exosomes from endometrial cancer patients contain LGALS3BP to promote endometrial cancer progression. Oncogene. 2021;40(3):633–46.

    CAS  PubMed  Google Scholar 

  34. Lei L, Mou Q. Exosomal taurine up-regulated 1 promotes angiogenesis and endothelial cell proliferation in cervical cancer. Cancer Biol Ther. 2020;21(8):717–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng L, Zhang K, Qing Y, Li D, Cui M, Jin P, et al. Proteomic and lipidomic analysis of exosomes derived from ovarian cancer cells and ovarian surface epithelial cells. J Ovarian Res. 2020;13(1):1–13.

    Google Scholar 

  36. Esfandyari S, Elkafas H, Chugh RM, Park H-s, Navarro A, Al-Hendy A. Exosomes as biomarkers for female reproductive diseases diagnosis and therapy. Int J Mol Sci. 2021;22(4):2165.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang N, Wang Y, Liu H, Shen W. Extracellular vesicle encapsulated microRNA-320a inhibits endometrial cancer by suppression of the HIF1α/VEGFA axis. Exp Cell Res. 2020;394(2):112113.

    CAS  PubMed  Google Scholar 

  38. Che X, Jian F, Chen C, Liu C, Liu G, Feng W. PCOS serum-derived exosomal miR-27a-5p stimulates endometrial cancer cells migration and invasion. J Mol Endocrinol. 2020;64(1):1–12.

    CAS  PubMed  Google Scholar 

  39. Sun B, Ma Y, Wang F, Hu L, Sun Y. miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis. Stem Cell Res Ther. 2019;10(1):1–9.

    Google Scholar 

  40. Lv A, Tu Z, Huang Y, Lu W, Xie B. Circulating exosomal miR-125a-5p as a novel biomarker for cervical cancer. Oncol Lett. 2021;21(1):1.

    Google Scholar 

  41. Zhang J, Li H, Fan B, Xu W, Zhang X. Extracellular vesicles in normal pregnancy and pregnancy-related diseases. J Cell Mol Med. 2020;24(8):4377–88.

    PubMed  PubMed Central  Google Scholar 

  42. Konečná B, Tóthová Ľ, Repiská G. Exosomes-associated dna—new marker in pregnancy complications? Int J Mol Sci. 2019;20(12):2890.

    PubMed  PubMed Central  Google Scholar 

  43. Zhang L, Li H, Yuan M, Li D, Sun C, Wang G. Serum exosomal microRNAs as potential circulating biomarkers for endometriosis. Dis Markers. 2020;2020:2456340.

  44. Gao Y, Zhang W, Zeng L-Q, Bai H, Li J, Zhou J, et al. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol. 2020;36:101635.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Acevedo-Sánchez V, Rodríguez-Hernández RM, Aguilar-Ruíz SR, Torres-Aguilar H, MdlA R-T. Extracellular vesicles in cervical cancer and HPV infection. Membranes. 2021;11(6):453.

    PubMed  PubMed Central  Google Scholar 

  46. Guo Y, Wang X, Wang K, He Y. Appraising the value of serum and serum-derived exosomal LncRNA-EXOC7 as a promising biomarker in cervical cancer. Clin Lab. 2020;66(7). https://doi.org/10.7754/Clin.Lab.2019.191203.

  47. Shen J, Zhu X, Fei J, Shi P, Yu S, Zhou J. Advances of exosome in the development of ovarian cancer and its diagnostic and therapeutic prospect. Onco Targets Ther. 2018;11:2831–41.

  48. Lin Y, Li Y, Chen P, Zhang Y, Sun J, Sun X, et al. Exosome-based regimen rescues endometrial fibrosis in intrauterine adhesions via targeting clinical fibrosis biomarkers. Stem Cells Transl Med. 2023;12(3):154–68.

    PubMed  PubMed Central  Google Scholar 

  49. Weng Z, Zhang B, Wu C, Yu F, Han B, Li B, et al. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer. J Hematol Oncol. 2021;14(1):1–22.

    Google Scholar 

  50. Rai A, Poh QH, Fatmous M, Fang H, Gurung S, Vollenhoven B, et al. Proteomic profiling of human uterine extracellular vesicles reveal dynamic regulation of key players of embryo implantation and fertility during menstrual cycle. Proteomics. 2021;21(13-14):2000211.

    CAS  Google Scholar 

  51. Khalaj K, Miller JE, Lingegowda H, Fazleabas AT, Young SL, Lessey BA, et al. Extracellular vesicles from endometriosis patients are characterized by a unique miRNA-lncRNA signature. JCI Insight. 2019;4(18):e128846.

  52. Adam S, Elfeky O, Kinhal V, Dutta S, Lai A, Jayabalan N, et al. Review: fetal-maternal communication via extracellular vesicles–implications for complications of pregnancies. Placenta. 2017;54:83–8.

    CAS  PubMed  Google Scholar 

  53. Salomon C, Yee SW, Mitchell MD, Rice GE. The possible role of extravillous trophoblast-derived exosomes on the uterine spiral arterial remodeling under both normal and pathological conditions. Biomed Res Int. 2014;2014

  54. Truong G, Guanzon D, Kinhal V, Elfeky O, Lai A, Longo S, et al. Oxygen tension regulates the miRNA profile and bioactivity of exosomes released from extravillous trophoblast cells–liquid biopsies for monitoring complications of pregnancy. PLoS One. 2017;12(3):e0174514.

    PubMed  PubMed Central  Google Scholar 

  55. Tannetta D, Collett G, Vatish M, Redman C, Sargent I. Syncytiotrophoblast extracellular vesicles–circulating biopsies reflecting placental health. Placenta. 2017;52:134–8.

    PubMed  PubMed Central  Google Scholar 

  56. Modzelewski J, Siarkowska I, Pajurek-Dudek J, Feduniw S, Muzyka-Placzyńska K, Baran A, et al. Atypical preeclampsia before 20 weeks of gestation—a systematic review. Int J Mol Sci. 2023;24(4):3752.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shen L, Li Y, Li R, Diao Z, Yany M, Wu M, et al. Placenta-associated serum exosomal miR-155 derived from patients with preeclampsia inhibits eNOS expression in human umbilical vein endothelial cells. Int J Mol Med. 2018;41(3):1731–9.

    CAS  PubMed  Google Scholar 

  58. Chen Y, Ding H, Wei M, Zha W, Guan S, Liu N, et al. MSC-secreted exosomal H19 promotes trophoblast cell invasion and migration by downregulating let-7b and upregulating FOXO1. Mol Ther Nucleic Acids. 2020;19:1237–49.

    CAS  PubMed  Google Scholar 

  59. Nirupama R, Divyashree S, Janhavi P, Muthukumar SP, Ravindra PV. Preeclampsia: pathophysiology and management. J Gynecol Obstet Hum Reprod. 2021;50(2):101975.

    CAS  PubMed  Google Scholar 

  60. Han C, Wang C, Chen Y, Wang J, Xu X, Hilton T, et al. Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica. 2020;105(6):1686.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bartsch E, Medcalf KE, Park AL, Ray JG. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ. 2016;353:i1753.

  62. Boyd P, Lindenbaum R, Redman C. Pre-eclampsia and trisomy 13: a possible association. Lancet. 1987;330(8556):425–7.

    Google Scholar 

  63. Li X, Zhou J, Fang M, Yu B. Pregnancy immune tolerance at the maternal-fetal interface. Int Rev Immunol. 2020;39(6):247–63.

    CAS  PubMed  Google Scholar 

  64. Roser V-T, Mirjana E, Rachel AB, Margherita YT, Miquel V-T, Kerstin BM, et al. Reconstructing the human first trimester fetal–maternal interface using single cell transcriptomics. bioRxiv. 2018:429589.

  65. Kazma JM, van den Anker J, Allegaert K, Dallmann A, Ahmadzia HK. Anatomical and physiological alterations of pregnancy. J Pharmacokinet Pharmacodyn. 2020;47(4):271–85.

    PubMed  PubMed Central  Google Scholar 

  66. Wang Z, Zhao G, Zeng M, Feng W, Liu J. Overview of extracellular vesicles in the pathogenesis of preeclampsia†. Biol Reprod. 2021;105(1):32–9.

    PubMed  Google Scholar 

  67. Alejandro EU, Mamerto TP, Chung G, Villavieja A, Gaus NL, Morgan E, Pineda-Cortel MRB. Gestational diabetes mellitus: a harbinger of the vicious cycle of diabetes. Int J Mol Sci. 2020;21(14):5003.

  68. Xu H, Du X, Xu J, Zhang Y, Tian Y, Liu G, et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 2020;18(2):e3000603.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Palma C, McIntyre HD, Salomon C. Extracellular vesicles—new players in cell-to-cell communication in gestational diabetes mellitus. Biomedicines. 2022;10(2):462.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Franzago M, Lanuti P, Fraticelli F, Marchioni M, Buca D, Di Nicola M, et al. Biological insight into the extracellular vesicles in women with and without gestational diabetes. J Endocrinol Investig. 2021;44(1):49–61.

    CAS  Google Scholar 

  71. Kandzija N, Zhang W, Motta-Mejia C, Mhlomi V, McGowan-Downey J, James T, et al. Placental extracellular vesicles express active dipeptidyl peptidase IV; levels are increased in gestational diabetes mellitus. J Extracell Vesicles. 2019;8(1):1617000.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Arman BM, Binder NK, de Alwis N, Tu’uhevaha J, Hannan NJ. Repurposing existing drugs as a therapeutic approach for the prevention of preterm birth. Reproduction. 2023;165(1):R9–R23.

    CAS  PubMed  Google Scholar 

  73. Hosny AE-DMS, Fakhry MN, El-Khayat W, Kashef MT. Risk factors associated with preterm labor, with special emphasis on preterm premature rupture of membranes and severe preterm labor. J Chin Med Assoc. 2020;83(3):280–7.

    CAS  PubMed  Google Scholar 

  74. Fallen S, Baxter D, Wu X, Kim TK, Shynlova O, Lee MY, et al. Extracellular vesicle RNA s reflect placenta dysfunction and are a biomarker source for preterm labour. J Cell Mol Med. 2018;22(5):2760–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Salomon C, Nuzhat Z, Dixon CL, Menon R. Placental exosomes during gestation: liquid biopsies carrying signals for the regulation of human parturition. Curr Pharm Des. 2018;24(9):974–82.

    CAS  PubMed  Google Scholar 

  76. Menon R, Debnath C, Lai A, Guanzon D, Bhatnagar S, Kshetrapal PK, et al. Circulating exosomal miRNA profile during term and preterm birth pregnancies: a longitudinal study. Endocrinology. 2019;160(2):249–75.

    CAS  PubMed  Google Scholar 

  77. Cook J, Bennett PR, Kim SH, Teoh TG, Sykes L, Kindinger LM, et al. First trimester circulating microRNA biomarkers predictive of subsequent preterm delivery and cervical shortening. Sci Rep. 2019;9(1):1–9.

    Google Scholar 

  78. Hadley EE, Sheller-Miller S, Saade G, Salomon C, Mesiano S, Taylor RN, et al. Amnion epithelial cell–derived exosomes induce inflammatory changes in uterine cells. Am J Obstet Gynecol. 2018;219(5):478–e1.

    PubMed Central  Google Scholar 

  79. Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, et al. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv Sci. 2019;6(24):1901779.

    CAS  Google Scholar 

  80. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49(3):347–60.

    CAS  PubMed  Google Scholar 

  81. Ciferri MC, Quarto R, Tasso R. Extracellular vesicles as biomarkers and therapeutic tools: from pre-clinical to clinical applications. Biology. 2021;10(5):359.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fan Y, Duan X, Zhao M, Wei X, Wu J, Chen W, et al. High-sensitive and multiplex biosensing assay of NSCLC-derived exosomes via different recognition sites based on SPRi array. Biosens Bioelectron. 2020;154:112066.

    CAS  PubMed  Google Scholar 

  83. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kounakis K, Chaniotakis M, Markaki M, Tavernarakis N. Emerging roles of lipophagy in health and disease. 2019;7:185.

  85. Tsiapalis D, O’Driscoll L. Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications. Cells. 2020;9(4):991.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Liang B, Liang J-M, Ding J-N, Xu J, Xu J-G, Chai Y-M. Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway. Stem Cell Res Ther. 2019;10(1):1–11.

    Google Scholar 

  87. Zavatti M, Beretti F, Casciaro F, Bertucci E, Maraldi T. Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on monoiodoacetate-induced animal model of osteoarthritis. Biofactors. 2020;46(1):106–17.

    CAS  PubMed  Google Scholar 

  88. Vonk LA, van Dooremalen SFJ, Liv N, Klumperman J, Coffer PJ, Saris DBF, et al. Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics. 2018;8(4):906.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhao L, Hu C, Zhang P, Jiang H, Chen J. Genetic communication by extracellular vesicles is an important mechanism underlying stem cell-based therapy-mediated protection against acute kidney injury. Stem Cell Res Ther. 2019;10(1):1–9.

    Google Scholar 

  90. Grange C, Tritta S, Tapparo M, Cedrino M, Tetta C, Camussi G, et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep. 2019;9(1):1–13.

    CAS  Google Scholar 

  91. Bruno S, Chiabotto G, Camussi G. Extracellular vesicles: a therapeutic option for liver fibrosis. Int J Mol Sci. 2020;21(12):4255.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. de Godoy MA, Saraiva LM, de Carvalho LRP, Vasconcelos-dos-Santos A, Beiral HJV, Ramos AB, et al. Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. J Biol Chem. 2018;293(6):1957–75.

    PubMed  Google Scholar 

  93. Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano. 2018;12(8):7613–28.

    CAS  PubMed  Google Scholar 

  94. Mobarak H, Rahbarghazi R, Lolicato F, Heidarpour M, Pashazadeh F, Nouri M, et al. Evaluation of the association between exosomal levels and female reproductive system and fertility outcome during aging: a systematic review protocol. Syst Rev. 2019;8(1):293.

    PubMed  PubMed Central  Google Scholar 

  95. Saadeldin IM, Tanga BM, Bang S, Fang X, Yoon K-Y, Lee S, et al. The theranostic roles of extracellular vesicles in pregnancy disorders. J Anim Reprod Biotechnol. 2022;37(1):2–12.

    Google Scholar 

  96. Zhang B, Liang R, Zheng M, Cai L, Fan X. Surface-functionalized nanoparticles as efficient tools in targeted therapy of pregnancy complications. Int J Mol Sci. 2019;20(15):3642.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Pereira KV, Giacomeli R, de Gomes MG, Haas SE. The challenge of using nanotherapy during pregnancy: technological aspects and biomedical implications. Placenta. 2020;100:75–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pepe GJ, Albrecht ED. Novel technologies for target delivery of therapeutics to the placenta during pregnancy: a review. Genes. 2021;12(8):1255.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Arrighetti N, Corbo C, Evangelopoulos M, Pastò A, Zuco V, Tasciotti E. Exosome-like nanovectors for drug delivery in cancer. Curr Med Chem. 2019;26(33):6132–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Qamar AY, Mahiddine FY, Bang S, Fang X, Shin ST, Kim MJ, et al. Extracellular vesicle mediated crosstalk between the gametes, conceptus, and female reproductive tract. Front Vet Sci. 2020;7:589117.

    PubMed  PubMed Central  Google Scholar 

  101. Qu P, Zhao Y, Wang R, Zhang Y, Li L, Fan J, et al. Extracellular vesicles derived from donor oviduct fluid improved birth rates after embryo transfer in mice. Reprod Fertil Dev. 2019;31(2):324–32.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the vice-chancellor of the University of Narowal, Narowal, Pakistan, for providing support for the accomplishment of this study.

Author information

Authors and Affiliations

Authors

Contributions

AA and MK: data curation and writing—original draft preparation. ZG and RA: visualization and methodology. SS, AP, and MI: editing, writing—reviewing. MBK: supervision, conceptualization, and administration.

Corresponding author

Correspondence to Muhammad Babar Khawar.

Ethics declarations

Ethics Approval

Not Applicable.

Consent to Participate

All authors have participated equally in this study.

Consent for Publication

All authors have been informed and approved the manuscript and gave their consent for submission and publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, A., Khan, M., Gul, Z. et al. Extracellular Vesicles: the Next Frontier in Pregnancy Research. Reprod. Sci. 31, 1204–1214 (2024). https://doi.org/10.1007/s43032-023-01434-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01434-2

Keywords

Navigation