Skip to main content

Advertisement

Log in

Disulfidptosis-Related lncRNA for the Establishment of Novel Prognostic Signature and Therapeutic Response Prediction to Endometrial Cancer

  • Gynecologic Oncology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Disulfidptosis, a newly discovered cellular death mechanism initiated by disulfide stress, features elevated expression of SLC7A11 and restricted glucose availability, rendering it a possible therapeutic target for cancer. Endometrial cancer of the uterine corpus (ECUC) ranks among prevalent gynecological malignancies. Long non-coding RNAs (lncRNAs) have been implicated in ECUC’s metabolic pathways, invasive capabilities, and metastatic processes. Yet, the prognostic implications of Disulfidptosis-Linked lncRNAs (DLLs) in ECUC remain ambiguous. Transcriptome and clinical datasets related to ECUC were sourced from The Cancer Genome Atlas (TCGA), while genes linked with disulfidptosis were identified from existing literature. A panel of ten DLLs was discerned through least absolute shrinkage and selection operator (LASSO) coupled with Cox regression methods to formulate and validate risk prognostic models. We engineered a nomogram for ECUC patient prognosis forecasting and further examined the model via gene set enrichment analysis (GSEA), principal component analysis (PCA), gene set analysis (GSA), immune profiling, and sensitivity to antineoplastic agents. Prognostic models employing a set of ten DLLs (including AC005034.2, AC020765.2, AL158071.4, AL161663.2, AP000787.1, CR392039.3, EMSLR, SEC24B-AS1, Z69733.1, Z94721.3) were established. Based on median risk values, patient samples were stratified into high- and low-risk cohorts, revealing notable differences in survival across both training and validation datasets. The risk scores, when amalgamated with clinical variables, acted as standalone predictors of prognosis. GSEA findings indicated that the high-risk category predominantly aligned with pathways like extracellular matrix interactions and cell adhesion molecules, suggesting a likely association with metastatic potential. Concurrently, we scrutinized disparities in immune function and tumor mutational burden across risk categories and identified anticancer drugs with likely efficacy. In summary, a set of ten DLLs proved useful in forecasting patient outcomes and holds potential for informing targeted therapeutic approaches in ECUC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. Crosbie EJ, Kitson SJ, McAlpine JN, et al. Endometrial cancer. Lancet. 2022;399:1412–28. https://doi.org/10.1016/S0140-6736(22)00323-3.

    Article  PubMed  Google Scholar 

  2. Oaknin A, Bosse TJ, Creutzberg CL, et al. Endometrial cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol. 2022;33:860–77. https://doi.org/10.1016/j.annonc.2022.05.009.

    Article  CAS  PubMed  Google Scholar 

  3. Makker V, MacKay H, Ray-Coquard I, et al. Endometrial cancer. Nat Rev Dis Primers. 2021;7:88. https://doi.org/10.1038/s41572-021-00324-8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brooks RA, Fleming GF, Lastra RR, et al. Current recommendations and recent progress in endometrial cancer. CA Cancer J Clin. 2019;69:258–79. https://doi.org/10.3322/caac.21561.

    Article  PubMed  Google Scholar 

  5. Liu X, Nie L, Zhang Y, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol. 2023;25:404–14. https://doi.org/10.1038/s41556-023-01091-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62. https://doi.org/10.1038/nature14344.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang J, Zhou Y, Xie S, et al. Metformin induces ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 2021;40:206. https://doi.org/10.1186/s13046-021-02012-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yuan S, Wei C, Liu G, et al. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1alpha/SLC7A11 pathway. Cell Prolif. 2022;55:e13158. https://doi.org/10.1111/cpr.13158.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Chen Y, Wang X, et al. Stem cell factor SOX2 confers ferroptosis resistance in lung cancer via upregulation of SLC7A11. Cancer Res. 2021;81:5217–29. https://doi.org/10.1158/0008-5472.CAN-21-0567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng P, Zhou C, Ding Y, et al. Disulfidptosis: a new target for metabolic cancer therapy. J Exp Clin Cancer Res. 2023;42:103. https://doi.org/10.1186/s13046-023-02675-4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ashrafizadeh M, Rabiee N, Kumar AP, et al. Long noncoding RNAs (lncRNAs) in pancreatic cancer progression. Drug Discov Today. 2022;27:2181–98. https://doi.org/10.1016/j.drudis.2022.05.012.

    Article  CAS  PubMed  Google Scholar 

  12. Xie W, Chu M, Song G, et al. Emerging roles of long noncoding RNAs in chemoresistance of pancreatic cancer. Semin Cancer Biol. 2022;83:303–18. https://doi.org/10.1016/j.semcancer.2020.11.004.

    Article  CAS  PubMed  Google Scholar 

  13. Liu SJ, Dang HX, Lim DA, et al. Long noncoding RNAs in cancer metastasis. Nat Rev Cancer. 2021;21:446–60. https://doi.org/10.1038/s41568-021-00353-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou B, Yang H, Yang C, et al. Translation of noncoding RNAs and cancer. Cancer Lett. 2021;497:89–99. https://doi.org/10.1016/j.canlet.2020.10.002.

    Article  CAS  PubMed  Google Scholar 

  15. Urick ME, Bell DW. Clinical actionability of molecular targets in endometrial cancer. Nat Rev Cancer. 2019;19:510–21. https://doi.org/10.1038/s41568-019-0177-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang H, Hu Y, Weng M, et al. Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer. J Adv Res. 2022;37:91–106. https://doi.org/10.1016/j.jare.2021.10.001.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, Liu L, Weng S, et al. Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer. Nat Commun. 2022;13:816. https://doi.org/10.1038/s41467-022-28421-6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu S, Sun Y, Hou Y, et al. A novel lncRNA ROPM-mediated lipid metabolism governs breast cancer stem cell properties. J Hematol Oncol. 2021;14:178. https://doi.org/10.1186/s13045-021-01194-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shetty A, Venkatesh T, Kabbekodu SP, et al. LncRNA-miRNA-mRNA regulatory axes in endometrial cancer: a comprehensive overview. Arch Gynecol Obstet. 2022;306:1431–47. https://doi.org/10.1007/s00404-022-06423-5.

    Article  CAS  PubMed  Google Scholar 

  20. Priyanka P, Sharma M, Das S, et al. E2F1-induced lncRNA, EMSLR regulates lncRNA LncPRESS1. Sci Rep. 2022;12:2548. https://doi.org/10.1038/s41598-022-06154-2.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu J, Zhang PJ, Zhang D, et al. An autophagy-associated lncRNAs model for predicting the survival in non-small cell lung cancer patients. Front Genet. 2022;13:919857. https://doi.org/10.3389/fgene.2022.919857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bai Y, Zhang Q, Liu F, et al. A novel cuproptosis-related lncRNA signature predicts the prognosis and immune landscape in bladder cancer. Front Immunol. 2022;13:1027449. https://doi.org/10.3389/fimmu.2022.1027449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Torrino S, Grasset EM, Audebert S, et al. Mechano-induced cell metabolism promotes microtubule glutamylation to force metastasis. Cell Metab. 2021;33:1342–1357.e10. https://doi.org/10.1016/j.cmet.2021.05.009.

    Article  CAS  PubMed  Google Scholar 

  24. Priyanga J, Guha G, Bhakta-Guha D. Microtubule motors in centrosome homeostasis: a target for cancer therapy? Biochim Biophys Acta Rev Cancer. 2021;1875:188524. https://doi.org/10.1016/j.bbcan.2021.188524.

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Kiseleva AA, Golemis EA. Ciliary signalling in cancer. Nat Rev Cancer. 2018;18:511–24. https://doi.org/10.1038/s41568-018-0023-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song L, Wang Y, Zhang J, et al. The risks of cancer development in systemic lupus erythematosus (SLE) patients: a systematic review and meta-analysis. Arthritis Res Ther. 2018;20:270. https://doi.org/10.1186/s13075-018-1760-3.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu B, Liu DA, Guan L, et al. Stiff matrix induces exosome secretion to promote tumour growth. Nat Cell Biol. 2023;25:415–24. https://doi.org/10.1038/s41556-023-01092-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ichikawa T, Okugawa Y, Toiyama Y, et al. Clinical significance and biological role of L1 cell adhesion molecule in gastric cancer. Br J Cancer. 2019;121:1058–68. https://doi.org/10.1038/s41416-019-0646-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gong W, Donnelly CR, Heath BR, et al. Cancer-specific type-I interferon receptor signaling promotes cancer stemness and effector CD8+ T-cell exhaustion. Oncoimmunology. 2021;10:1997385. https://doi.org/10.1080/2162402X.2021.1997385.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Aehnlich P, Powell RM, Peeters MJW, et al. TAM receptor inhibition-implications for cancer and the immune system. Cancers (Basel). 2021;13(6):1195. https://doi.org/10.3390/cancers13061195.

  31. Aran D, Lasry A, Zinger A, et al. Widespread parainflammation in human cancer. Genome Biol. 2016;17:145. https://doi.org/10.1186/s13059-016-0995-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Addeo A, Friedlaender A, Banna GL, et al. TMB or not TMB as a biomarker: that is the question. Crit Rev Oncol Hematol. 2021;163:103374. https://doi.org/10.1016/j.critrevonc.2021.103374.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SS, HL, and XT initiated the study and designed the experiments. SS and HL performed data collection and analysis. XT helped with discussion and interpretation of results. SS wrote the manuscript.

Corresponding author

Correspondence to Hua Liu.

Ethics declarations

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Institutional Review Board Statement

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(JPG 902 kb)

ESM 2

(JPG 985 kb)

ESM 3

(JPG 914 kb)

ESM 4

(JPG 365 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Tang, X. & Liu, H. Disulfidptosis-Related lncRNA for the Establishment of Novel Prognostic Signature and Therapeutic Response Prediction to Endometrial Cancer. Reprod. Sci. 31, 811–822 (2024). https://doi.org/10.1007/s43032-023-01382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01382-x

Keywords

Navigation