Skip to main content
Log in

Total Fertilization Failure: A Single Center Analysis

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Our main objective was to identify the male and female parameters associated with total fertilization failure (TFF) in IVF with nonmasculine indications. The present work, IRB equivalent INS 63209, is a case–control study that evaluated all cases with TFF after conventional IVF at the Center for Human Reproduction from January 2010 to December 2019 (n = 154). As a control group, we analyzed all patients who did not experience fertilization failure after conventional IVF in the same period (n = 475). We evaluated various parameters, both male and female, assessed during infertility treatment, and only cases without masculine etiology (normal seminal parameters) were included. Ages (female and male) were not different between the groups. Moreover, AMH (anti-Müllerian hormone), semen volume, preprocessing concentration and preprocessing motility were not significantly different (P > 0.05). However, the number of collected oocytes (study versus control groups, median [25–75 interquartile]: 2 [1–5] and 5 [3–8]); MII (2 [1–4] and 5 [2–7]); and postprocessing motility (85 [70–90] and 90 [80–95]) were significantly different between both groups (P < 0.05). Furthermore, a logistic regression analysis including all significant data demonstrated that the number of collected oocytes was significantly related to IVF failure. Patients with fewer than 5 oocytes had an OR of − 1.37 (− 0.938 to − 1.827) for TFF after conventional IVF. Our results showed that a lower follicular response to controlled ovarian stimulation, evidenced by a decreased number of collected oocytes, was the most important parameter associated with IVF failure in nonmasculine infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Kahyaoglu I, Demir B, Turkkanı A, Cınar O, Dilbaz S, Dilbaz B, Mollamahmutoglu L. Total fertilization failure: is it the end of the story? J Assist Reprod Genet. 2014;31:1155–60.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update. 2008;14:431–46.

    Article  PubMed  Google Scholar 

  3. Mahutte NG, Arici A. Failed fertilization: is it predictable? Curr Opin Obstet Gynecol. 2003;15:211–8.

    Article  PubMed  Google Scholar 

  4. Wall MB, Marks K, Smith TA, Gearon CM, Muggleton-Harris AL. Cytogenetic and fluorescent in-situ hybridization chromosomal studies on in-vitro fertilized and intracytoplasmic sperm injected “failed-fertilized” human oocytes. Hum Reprod. 1996;11:2230–8.

    Article  CAS  PubMed  Google Scholar 

  5. Edirisinghe WR, Murch A, Junk S, Yovich JL. Cytogenetic abnormalities of unfertilized oocytes generated from in-vitro fertilization and intracytoplasmic sperm injection: a double-blind study. Hum Reprod. 1997;12:2784–91.

    Article  CAS  PubMed  Google Scholar 

  6. Hull MG, Fleming CF, Hughes AO, McDermott A. The age-related decline in female fecundity: a quantitative controlled study of implanting capacity and survival of individual embryos after in vitro fertilization. Fertil Steril. 1996;65:783–90.

    Article  CAS  PubMed  Google Scholar 

  7. Mahadevan MM, Trounson AO. The influence of seminal characteristics on the success rate of human in vitro fertilization. Fertil Steril. 1984;42:400–5.

    Article  CAS  PubMed  Google Scholar 

  8. Jeulin C, Feneux D, Serres C, Jouannet P, Guillet-Rosso F, Belaisch-Allart J, Frydman R, Testart J. Sperm factors related to failure of human in-vitro fertilization. J Reprod Fertil. 1986;76:735–44.

    Article  CAS  PubMed  Google Scholar 

  9. Kruger TF, Acosta AA, Simmons KF, Swanson RJ, Matta JF, Oehninger S. Predictive value of abnormal sperm morphology in in vitro fertilization. Fertil Steril. 1988;49:112–7.

    Article  CAS  PubMed  Google Scholar 

  10. Liu DY, Lopata A, Johnston WIH, Baker HWG. Human sperm—zona pellucida binding, sperm characteristics and in-vitro fertilization. Hum Reprod. 1989;4:696–701.

    Article  CAS  PubMed  Google Scholar 

  11. Franken DR, Kruger TF, Oehninger S, Coddington CC, Lombard C, Smith K, Hodgen GD. Andrology: the ability of the hemizona assay to predict human fertilization in different and consecutive in-vitro fertilization cycles. Hum Reprod. 1993;8:1240–4.

    Article  CAS  PubMed  Google Scholar 

  12. Oehninger S, Mahony M, Ozgür K, Kolm P, Kruger T, Franken D. Clinical significance of human sperm-zona pellucida binding. Fertil Steril. 1997;67:1121–7.

    Article  CAS  PubMed  Google Scholar 

  13. Aziz N, Buchan I, Taylor C, Kingsland CR, Lewis-Jones I. The sperm deformity index: a reliable predictor of the outcome of oocyte fertilization in vitro. Fertil Steril. 1996;66:1000–8.

    Article  CAS  PubMed  Google Scholar 

  14. Lai Q, Chen C, Zhang Z, Zhang S, Yu Q, Yang P, Hu J, Wang C-Y. The significance of antral follicle size prior to stimulation in predicting ovarian response in a multiple dose GnRH antagonist protocol. Int J Clin Exp Pathol. 2013;6:258–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bessow C, Donato R, de Souza T, Chapon R, Genro V, Cunha-Filho JS. Antral follicle responsiveness assessed by follicular output RaTe(FORT) correlates with follicles diameter. J Ovarian Res. 2019;12:48.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aboulghar MA, Mansour RT. Ovarian hyperstimulation syndrome: classifications and critical analysis of preventive measures. Hum Reprod Update. 2003;9:275–89.

    Article  CAS  PubMed  Google Scholar 

  17. Gallot V, Berwanger da Silva AL, Genro V, Grynberg M, Frydman N, Fanchin R. Antral follicle responsiveness to follicle-stimulating hormone administration assessed by the Follicular Output RaTe (FORT) may predict in vitro fertilization-embryo transfer outcome. Hum Reprod. 2012;27(4):1066–72. https://doi.org/10.1093/humrep/der479.

  18. Ligon S, Lustik M, Levy G, Pier B. Low antimüllerian hormone (AMH) is associated with decreased live birth after in vitro fertilization when follicle-stimulating hormone and AMH are discordant. Fertil Steril. 2019;112:73-81.e1.

    Article  CAS  PubMed  Google Scholar 

  19. van der Gaast MH, Eijkemans MJC, van der Net JB, de Boer EJ, Burger CW, van Leeuwen FE, Fauser BCJM, Macklon NS. Optimum number of oocytes for a successful first IVF treatment cycle. Reprod Biomed Online. 2006;13:476–80.

    Article  PubMed  Google Scholar 

  20. Hamoda H, Sunkara S, Khalaf Y, Braude P, El-Toukhy T. Outcome of fresh IVF/ICSI cycles in relation to the number of oocytes collected: a review of 4,701 treatment cycles. Hum Reprod. 2010;25:147.

  21. Sunkara SK, Rittenberg V, Raine-Fenning N, Bhattacharya S, Zamora J, Coomarasamy A. Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod. 2011;26:1768–74.

    Article  PubMed  Google Scholar 

  22. Steward RG, Lan L, Shah AA, Yeh JS, Price TM, Goldfarb JM, Muasher SJ. Oocyte number as a predictor for ovarian hyperstimulation syndrome and live birth: an analysis of 256,381 in vitro fertilization cycles. Fertil Steril. 2014;101:967–73.

    Article  PubMed  Google Scholar 

  23. Magnusson Å, Källen K, Thurin-Kjellberg A, Bergh C. The number of oocytes retrieved during IVF: a balance between efficacy and safety. Hum Reprod. 2018;33:58–64.

    Article  PubMed  Google Scholar 

  24. Ji J, Liu Y, Tong XH, Luo L, Ma J, Chen Z. The optimum number of oocytes in IVF treatment: an analysis of 2455 cycles in China. Hum Reprod. 2013;28:2728–34.

    Article  PubMed  Google Scholar 

  25. De Conto E, Genro VK, da Silva DS, de Chapon R, CB, Cunha-Filho JSL,. AMH as a prognostic factor for blastocyst development. JBRA Assist Reprod. 2015;19:131–4.

    Article  PubMed  Google Scholar 

  26. Su N, Zhan J, Xie M, Zhao Y, Huang C, Wang S, Liao L, Zhang X, Liu F. High anti-Mullerian hormone level is adversely associated with cumulative live birth rates of two embryo transfers after the first initiated cycle in patients with polycystic ovary syndrome. Front Endocrinol. 2023;14:1123125.

    Article  Google Scholar 

  27. Lu YJ, Li Q, Chen LX, Tian T, Kang J, Hao YX, Zhou JS, Wang YY, Yan LY, Li R, Chang L, Qiao J. Association between maternal MTHFR C677T/A1298C combination polymorphisms and IVF/ICSI outcomes: a retrospective cohort study. Hum Reprod Open. 2023;2023(1):hoac055. https://doi.org/10.1093/hropen/hoac055.

  28. Krog M, Prior M, Carlsen E, Loft A, Forman J, Pinborg A, Andersen AN. Fertilization failure after IVF in 304 couples–a case-control study on predictors and long-term prognosis. Eur J Obstet Gynecol Reprod Biol. 2015;184:32–7.

    Article  PubMed  Google Scholar 

  29. Tian T, Chen L, Yang R, Long X, Li Q, Hao Y, Kong F, Li R, Wang Y, Qiao J. Prediction of fertilization disorders in the in vitro fertilization/intracytoplasmic sperm injection: a retrospective study of 106,728 treatment cycles. Front Endocrinol. 2022;13:870708.

    Article  Google Scholar 

  30. Tian T, Kong F, Yang R, et al. A Bayesian network model for prediction of low or failed fertilization in assisted reproductive technology based on a large clinical real-world data. Reprod Biol Endocrinol. 2023;21:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tannus S, Son W-Y, Gilman A, Younes G, Shavit T, Dahan M-H. The role of intracytoplasmic sperm injection in non-male factor infertility in advanced maternal age. Hum Reprod. 2017;32:119–24.

    PubMed  Google Scholar 

  32. Isikoglu M, Ceviren AK, Cetin T, Avci A, Aydinuraz B, Akgul OK, Karaca M. Comparison of ICSI and conventional IVF in non-male factor patients with less than four oocytes. Arch Gynecol Obstet. 2022;306:493–9.

    Article  PubMed  Google Scholar 

  33. Supramaniam PR, Granne I, Ohuma EO, Lim LN, McVeigh E, Venkatakrishnan R, Becker CM, Mittal M. ICSI does not improve reproductive outcomes in autologous ovarian response cycles with non-male factor subfertility. Hum Reprod. 2020;35:583–94.

    Article  CAS  PubMed  Google Scholar 

  34. Iwamoto A, Summers KM, Sparks AE, Mancuso AC, Van Voorhis BJ. ICSI VS. Conventional IVF use in non-male factor infertility. Fertil Steril. 2021;116:e16.

    Article  Google Scholar 

  35. Hervás I, Pacheco A, Rivera-Egea R, Gil Julia M, Navarro-Gomezlechon A, Garrido N. IVF/ICSI cumulative live birth rates per consumed oocyte remain comparable regardless of sperm DNA fragmentation by TUNEL. Reprod Biomed Online. 2022;44(6):1079–89. https://doi.org/10.1016/j.rbmo.2022.02.010.

  36. Harris AL, Vanegas JC, Hariton E, Bortoletto P, Palmor M, Humphries LA, Tanrikut C, Chavarro JE, Styer AK. Semen parameters on the day of oocyte retrieval predict low fertilization during conventional insemination IVF cycles. J Assist Reprod Genet. 2019;36:291–8.

    Article  CAS  PubMed  Google Scholar 

  37. del M. Molina Hita M, Lobo Martínez S, González Varea C, Montejo Gadea JM. Correlation between the number of oocytes and the pregnancy rate in IVF-ICSI cycles. Revista Iberoamericana de Fertilidad y Reproduccion Humana. 2008;25(3):153–9.

  38. Ambe AK, González SE, Mondragón EC, Monterrosas LD. Comparative analysis of pregnancy rate/captured oocytes in an in vitro fertilization program. Ginecol Obstet Mex. 2008;76:256–60.

    Google Scholar 

  39. Li HWR, Lee VCY, Ho PC, Ng EHY. Ovarian sensitivity index is a better measure of ovarian responsiveness to gonadotrophin stimulation than the number of oocytes during in-vitro fertilization treatment. J Assist Reprod Genet. 2014;31:199–203.

    Article  PubMed  Google Scholar 

  40. Li HWR, Lee VCY, Lau EYL, Yeung WSB, Ho PC, Ng EHY. Role of baseline antral follicle count and anti-Mullerian hormone in prediction of cumulative live birth in the first in vitro fertilisation cycle: a retrospective cohort analysis. PLoS ONE. 2013;8:e61095.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Broer SL, Mol BWJ, Hendriks D, Broekmans FJM. The role of antimullerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril. 2009;91:705–14.

    Article  CAS  PubMed  Google Scholar 

  42. Genro VK, Matte U, De Conto E, Cunha-Filho JS, Fanchin R. Frequent polymorphisms of FSH receptor do not influence antral follicle responsiveness to follicle-stimulating hormone administration as assessed by the Follicular Output RaTe (FORT). J Assist Reprod Genet. 2012;29:657–63.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Connell MT, Richter KS, Devine K, Hill MJ, DeCherney AH, Doyle JO, Tucker MJ, Levy MJ. Larger oocyte cohorts maximize fresh IVF cycle birth rates and availability of surplus high-quality blastocysts for cryopreservation. Reprod Biomed Online. 2019;38:711–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

De Souza, LK was responsible for data collection, writing, revising and submission of this manuscript; Witusk, JP was responsible for writing; Galgaro, BC and Rodrigues, LS were responsible for data collection and revising; Cunha-Filho, JSL was responsible for statistical analysis and reviewing this manuscript.

Corresponding author

Correspondence to Lisiane Knob de Souza.

Ethics declarations

Ethics Approval

Ethical Committee (IRB equivalent INS 63209).

Consent for Participate

Not applicable.

Consent for Publication

The authors also understand that should the submitted material be accepted for publication in the journal, they will automatically transfer the copyright to the publisher.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, L.K., Witusk, J.P.D., Galgaro, B.C. et al. Total Fertilization Failure: A Single Center Analysis. Reprod. Sci. 31, 697–703 (2024). https://doi.org/10.1007/s43032-023-01338-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01338-1

Keywords

Navigation