Skip to main content

Advertisement

Log in

Mononuclear Cells Negatively Regulate Endothelial Ca2+ Signaling

  • Pregnancy: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Endothelial Ca2+ signaling has important roles to play in maintaining pregnancy associated vasodilation in the utero-placenta. Inflammatory cytokines, often elevated in vascular complications of pregnancy, negatively regulate ATP-stimulated endothelial Ca2+ signaling and associated nitric oxide production. However, the role of direct engagement of immune cells on endothelial Ca2+ signaling and therefore endothelial function is unclear. To model immune-endothelial interactions, herein, we evaluate the effects of peripheral blood mononuclear cells (PBMCs) in short-term interaction with human umbilical vein endothelial cells (HUVECs) on agonist-stimulated Ca2+ signaling in HUVECs. We find that mononuclear cells (10:1 and 25:1 mononuclear: HUVEC) cause decreased ATP-stimulated Ca2+ signaling; worsened by activated mononuclear cells possibly due to increased cytokine secretion. Additionally, monocytes, natural killers, and T-cells cause decrease in ATP-stimulated Ca2+ signaling using THP-1 (monocyte), NKL (natural killer cells), and Jurkat (T-cell) cell lines, respectively. PBMCs with Golgi-restricted protein transport prior to interaction with endothelial cells display rescue in Ca2+ signaling, strongly suggesting that secreted proteins from PBMCs mediate changes in HUVEC Ca2+ signaling. We propose that endothelial cells from normal pregnancy interacting with PBMCs may model preeclamptic endothelial-immune interaction and resultant endothelial dysfunction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data reported in this paper will be shared by the lead contact upon request.

Code Availability

Not applicable.

References

  1. Aggarwal R, Jain AK, Mittal P, Kohli M, Jawanjal P, Rath G. Association of pro- and anti-inflammatory cytokines in preeclampsia. J Clin Lab Anal. 2019;33:e22834. https://doi.org/10.1002/jcla.22834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Al-Azemi M, Raghupathy R, Azizieh F. Pro-inflammatory and anti-inflammatory cytokine profiles in fetal growth restriction. Clin Exp Obstet Gynecol. 2017;44:98–103.

    Article  CAS  PubMed  Google Scholar 

  3. Ampey AC, Boeldt DS, Clemente L, Grummer MA, Yi F, Magness RR, Bird IM. TNF-alpha inhibits pregnancy-adapted Ca2+ signaling in uterine artery endothelial cells. Mol Cell Endocrinol. 2019;488:14–24. https://doi.org/10.1016/j.mce.2019.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baran J, Kowalczyk D, Ozóg M, Zembala M. Three-color flow cytometry detection of intracellular cytokines in peripheral blood mononuclear cells: comparative analysis of phorbol myristate acetate-ionomycin and phytohemagglutinin stimulation. Clin Diagn Lab Immunol. 2001;8:303–13. https://doi.org/10.1128/CDLI.8.2.303-313.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beckmann I, Efraim SB, Vervoort M, Visser W, Wallenburg HCS. Tumor necrosis factor-α in whole blood cultures of preeclamptic patients and healthy pregnant and nonpregnant women. Hypertens Pregnancy. 2004;23:319–29. https://doi.org/10.1081/PRG-200030334.

    Article  CAS  PubMed  Google Scholar 

  6. Bird IM, Boeldt DS, Krupp J, Grummer MA, Yi FX, Magness RR. Pregnancy, programming and preeclampsia: gap junctions at the nexus of pregnancy-induced adaptation of endothelial function and endothelial adaptive failure in PE. Curr Vasc Pharmacol. 2013;11:712–29. https://doi.org/10.2174/1570161111311050009.

    Article  CAS  PubMed  Google Scholar 

  7. Bird IM, Sullivan JA, Di T, Cale JM, Zhang L, Zheng J, Magness RR. Pregnancy-dependent changes in cell signaling underlie changes in differential control of vasodilator production in uterine artery endothelial cells1. Endocrinology. 2000;141:1107–17. https://doi.org/10.1210/endo.141.3.7367.

    Article  CAS  PubMed  Google Scholar 

  8. Black KD, Horowitz JA. Inflammatory markers and preeclampsia: a systematic review. Nurs Res. 2018;67:242–51. https://doi.org/10.1097/NNR.0000000000000285.

    Article  PubMed  Google Scholar 

  9. Boeldt DS, Bird IM. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J Endocrinol. 2017;232:R27–44. https://doi.org/10.1530/JOE-16-0340.

    Article  CAS  PubMed  Google Scholar 

  10. Boeldt DS, Hankes AC, Alvarez RE, Khurshid N, Balistreri M, Grummer MA, Yi F, Bird IM. Pregnancy programming and preeclampsia: identifying a human endothelial model to study pregnancy-adapted endothelial function and endothelial adaptive failure in preeclamptic subjects. Adv Exp Med Biol. 2014;814:27–47. https://doi.org/10.1007/978-1-4939-1031-1_4.

    Article  CAS  PubMed  Google Scholar 

  11. Boeldt DS, Krupp J, Yi F-X, Khurshid N, Shah DM, Bird IM. Positive versus negative effects of VEGF165 on Ca 2+ signaling and NO production in human endothelial cells. Am. J. Physiol.-Heart Circ. Physiol. 2017;312:H173–81. https://doi.org/10.1152/ajpheart.00924.2015.

    Article  Google Scholar 

  12. Bolon ML, Peng T, Kidder GM, Tyml K. Lipopolysaccharide plus hypoxia and reoxygenation synergistically reduce electrical coupling between microvascular endothelial cells by dephosphorylating Connexin40. J Cell Physiol. 2008;217:350–9. https://doi.org/10.1002/jcp.21505.

    Article  CAS  PubMed  Google Scholar 

  13. Bounds KR, Newell-Rogers MK, Mitchell BM. Four pathways involving innate immunity in the pathogenesis of preeclampsia. Front Cardiovasc Med. 2015;2. https://doi.org/10.3389/fcvm.2015.00020

  14. Cornelius DC, Amaral LM, Wallace K, Campbell N, Thomas AJ, Scott J, Herse F, Wallukat G, Dechend R, LaMarca B. Reduced uterine perfusion pressure T-helper 17 cells cause pathophysiology associated with preeclampsia during pregnancy. Am J Physiol-Regul Integr Comp Physiol. 2016;311:R1192–9. https://doi.org/10.1152/ajpregu.00117.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Darmochwal-Kolarz D, Kludka-Sternik M, Tabarkiewicz J, Kolarz B, Rolinski J, Leszczynska-Gorzelak B, Oleszczuk J. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. J Reprod Immunol. 2012;93:75–81. https://doi.org/10.1016/j.jri.2012.01.006.

    Article  CAS  PubMed  Google Scholar 

  16. Elfarra J, Amaral LM, McCalmon M, Scott JD, Cunningham MW, Gnam A, Ibrahim T, LaMarca B, Cornelius DC. Natural killer cells mediate pathophysiology in response to reduced uterine perfusion pressure. Clin Sci. 2017;131:2753–62. https://doi.org/10.1042/CS20171118.

    Article  CAS  Google Scholar 

  17. Godoy-Ramirez K, Franck K, Mahdavifar S, Andersson L, Gaines H. Optimum culture conditions for specific and nonspecific activation of whole blood and PBMC for intracellular cytokine assessment by flow cytometry. J Immunol Methods. 2004;292:1–15. https://doi.org/10.1016/j.jim.2004.04.028.

    Article  CAS  PubMed  Google Scholar 

  18. González JC, Kwok WW, Wald A, McClurkan CL, Huang J, Koelle DM. Expression of cutaneous lymphocyte—associated antigen and E-selectin ligand by circulating human memory CD4+ T lymphocytes specific for herpes simplex virus type 2. J Infect Dis. 2005;191:243–54. https://doi.org/10.1086/426944.

    Article  PubMed  Google Scholar 

  19. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–60. https://doi.org/10.1084/jem.20070657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang AJ, Manning JE, Bandak TM, Ratau MC, Hanser KR, Silverstein SC. Endothelial cell cytosolic free calcium regulates neutrophil migration across monolayers of endothelial cells. J Cell Biol. 1993;120:1371–80. https://doi.org/10.1083/jcb.120.6.1371.

    Article  CAS  PubMed  Google Scholar 

  21. Jensen F, Wallukat G, Herse F, Budner O, El-Mousleh T, Costa S-D, Dechend R, Zenclussen AC. CD19+CD5+ cells as indicators of preeclampsia. Hypertens Dallas Tex. 2012;1979(59):861–8. https://doi.org/10.1161/HYPERTENSIONAHA.111.188276.

    Article  CAS  Google Scholar 

  22. Kossmann S, Schwenk M, Hausding M, Karbach SH, Schmidgen MI, Brandt M, Knorr M, Hu H, Kröller-Schön S, Schönfelder T, Grabbe S, Oelze M, Daiber A, Münzel T, Becker C, Wenzel P. Angiotensin II–induced vascular dysfunction depends on interferon-γ–driven immune cell recruitment and mutual activation of monocytes and NK-cells. Arterioscler Thromb Vasc Biol. 2013;33:1313–9. https://doi.org/10.1161/ATVBAHA.113.301437.

    Article  CAS  PubMed  Google Scholar 

  23. Krupp J, Boeldt DS, Yi F-X, Grummer MA, Bankowski Anaya HA, Shah DM, Bird IM. The loss of sustained Ca(2+) signaling underlies suppressed endothelial nitric oxide production in preeclamptic pregnancies: implications for new therapy. Am J Physiol Heart Circ Physiol. 2013;305:H969-979. https://doi.org/10.1152/ajpheart.00250.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. LaMarca B. The role of immune activation in contributing to vascular dysfunction and the pathophysiology of hypertension during preeclampsia. Minerva Ginecol. 2010;62:105–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. LaMarca B, Cornelius DC, Harmon AC, Amaral LM, Cunningham MW, Faulkner JL, Wallace K. Identifying immune mechanisms mediating the hypertension during preeclampsia. Am J Physiol-Regul Integr Comp Physiol. 2016;311:R1–9. https://doi.org/10.1152/ajpregu.00052.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ma Y, Ye Y, Zhang J, Ruan C-C, Gao P-J. Immune imbalance is associated with the development of preeclampsia. Medicine (Baltimore). 2019;98:e15080. https://doi.org/10.1097/MD.0000000000015080.

    Article  CAS  PubMed  Google Scholar 

  27. Mauro AK, Berdahl DM, Khurshid N, Clemente L, Ampey AC, Shah DM, Bird IM, Boeldt DS. Conjugated linoleic acid improves endothelial Ca2+ signaling by blocking growth factor and cytokine-mediated Cx43 phosphorylation. Mol Cell Endocrinol. 2020;510:110814. https://doi.org/10.1016/j.mce.2020.110814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mauro AK, Khurshid N, Berdahl DM, Ampey AC, Adu D, Shah DM, Boeldt DS. Cytokine concentrations direct endothelial function in pregnancy and preeclampsia. J Endocrinol. 2021;248:107–17. https://doi.org/10.1530/JOE-20-0397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miller D, Motomura K, Galaz J, Gershater M, Lee ED, Romero R, Gomez-Lopez N. Cellular immune responses in the pathophysiology of preeclampsia. J Leukoc Biol. 2022;111:237–60. https://doi.org/10.1002/JLB.5RU1120-787RR.

    Article  CAS  PubMed  Google Scholar 

  30. Pfau S, Leitenberg D, Rinder H, Smith BR, Pardi R, Bender JR. Lymphocyte adhesion-dependent calcium signaling in human endothelial cells. J Cell Biol. 1995;128:969–78.

    Article  CAS  PubMed  Google Scholar 

  31. Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J. Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol. 1996;24:406–15.

    CAS  PubMed  Google Scholar 

  32. Solan JL, Lampe PD. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett. Junctional Proteins. 2014;588:1423–9. https://doi.org/10.1016/j.febslet.2014.01.049.

    Article  CAS  Google Scholar 

  33. Spence T, Allsopp PJ, Yeates AJ, Mulhern MS, Strain JJ, McSorley EM. Maternal serum cytokine concentrations in healthy pregnancy and preeclampsia. J Pregnancy. 2021;2021:1–33. https://doi.org/10.1155/2021/6649608.

    Article  CAS  Google Scholar 

  34. Steinert JR, Wyatt AW, Poston L, Jacob R, Mann GE. Preeclampsia is associated with altered Ca2+ regulation and nitric oxide production in human fetal venous endothelial cells. FASEB J. 2002;16:721–3. https://doi.org/10.1096/fj.01-0916fje.

    Article  CAS  PubMed  Google Scholar 

  35. Su W-H, Chen H, Huang J, Jen CJ. Endothelial [Ca2+]i signaling during transmigration of polymorphonuclear leukocytes. Blood. 2000;96:3816–22. https://doi.org/10.1182/blood.V96.12.3816.

    Article  CAS  PubMed  Google Scholar 

  36. Sullivan KE, Cutilli J, Piliero LM, Ghavimi-Alagha D, Starr SE, Campbell DE, Douglas SD. Measurement of cytokine secretion, intracellular protein expression, and mRNA in resting and stimulated peripheral blood mononuclear cells. Clin Diagn Lab Immunol. 2000;7:920–4. https://doi.org/10.1128/CDLI.7.6.920-924.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Toldi G, Švec P, Vásárhelyi B, Mészáros G, Rigó J, Tulassay T, Treszl A. Decreased number of FoxP3+ regulatory T cells in preeclampsia. Acta Obstet Gynecol Scand. 2008;87:1229–33. https://doi.org/10.1080/00016340802389470.

    Article  PubMed  Google Scholar 

  38. Yi F-X, Boeldt DS, Gifford SM, Sullivan JA, Grummer MA, Magness RR, Bird IM. Pregnancy enhances sustained Ca2+ bursts and endothelial nitric oxide synthase activation in ovine uterine artery endothelial cells through increased connexin 43 function 1. Biol Reprod. 2010;82:66–75. https://doi.org/10.1095/biolreprod.109.078253.

    Article  CAS  PubMed  Google Scholar 

  39. Yi F-X, Boeldt DS, Magness RR, Bird IM. [Ca2+]i signaling vs. eNOS expression as determinants of NO output in uterine artery endothelium: relative roles in pregnancy adaptation and reversal by VEGF165. Am J Physiol Heart Circ Physiol. 2011;300:H1182-1193. https://doi.org/10.1152/ajpheart.01108.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ziegelstein RC, Corda S, Pili R, Passaniti A, Lefer D, Zweier JL, Fraticelli A, Capogrossi MC. Initial contact and subsequent adhesion of human neutrophils or monocytes to human aortic endothelial cells releases an endothelial intracellular calcium store. Circulation. 1994;90:1899–907. https://doi.org/10.1161/01.CIR.90.4.1899.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is also a part of AR’s requirements towards her PhD at the University of Wisconsin Madison in Endocrinology and Reproductive Physiology Training program. This was funded by Wisconsin Alumni Research Foundation (WARF), School of Medicine and Public Health (SMPH), the Department of Obstetrics and Gynecology (Ob-Gyn), and Office of the Vice Chancellor for Research and Graduate Education (OVCRGE) at University of Wisconsin-Madison. MSP provided immune cell lines. Images in figures were produced and adapted from Servier Medical Art (smart.servier.com).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization — DSB, MSP, AR; methodology — AR, DSB, AKS, MSP; formal analysis — AR; investigation — AR, JA; resources — DSB, MSP; writing — original draft — AR, DSB; writing — review and editing — AR, DSB, MSP, AKS; supervision — DSB; project administration — DSB; funding acquisition — DSB.

Corresponding author

Correspondence to Derek S. Boeldt.

Ethics declarations

Ethics Approval

Jointly approved by Institutional Review Board (IRB) at University of Wisconsin, Madison, and Meriter Hospital, Madison.

Consent to Participate

Consent was obtained for tissue collection and all samples were deidentified.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 719 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rengarajan, A., Austin, J.L., Stanic, A.K. et al. Mononuclear Cells Negatively Regulate Endothelial Ca2+ Signaling. Reprod. Sci. 30, 2292–2301 (2023). https://doi.org/10.1007/s43032-023-01164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01164-5

Keywords

Navigation