Skip to main content

Advertisement

Log in

Melatonin Increases Proliferation and Decreases Apoptosis of GC-1 spg Cells by Upregulating the Expression of circTec

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Melatonin has been shown to be beneficial for the motility of human sperm, although its mechanism remains to be uncovered. Circular RNAs (circRNAs) have been shown to regulate cellular function in many diseases. However, there has been no relevant research on the effect of melatonin on sperm circRNAs. In this study, we aimed to explore the changes in circRNAs after melatonin treatment of GC-1 spg cells and identify key functional circRNAs. The results showed that melatonin enhanced the proliferation and reduced the apoptosis of GC-1 spg cells. A total of 1423 circRNAs were found to be significantly differentially expressed between groups with and without melatonin treatment. Of these circRNAs, 702 were upregulated and 721 were downregulated. circTec was one of the upregulated circRNAs. Suppressing the expression of circTec significantly reduced cell proliferation and mammalian target of rapamycin (mTOR) signaling pathway activation but promoted melatonin-treated GC-1 spg cell apoptosis. In conclusion, melatonin increased the expression of circTec to exert its physiological effects on GC-1 spg cells, possibly by activating the mTOR signaling pathway. These results enhance our understanding of the biological function of circTec and its regulation by melatonin in spermatogenesis and infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Code Availability

Not applicable.

References

  1. Del Giudice F, Kasman AM, Ferro M, Sciarra A, De Berardinis E, Belladelli F, et al. Clinical correlation among male infertility and overall male health: a systematic review of the literature. Investig Clin Urol. 2020;61(4):355–71.

    Article  Google Scholar 

  2. Batty GD, Mortensen LH, Shipley MJ. Semen quality and risk factors for mortality. Epidemiology. 2019;30(3):e19–21.

    Article  Google Scholar 

  3. Cipolla-Neto J, Amaral FGD. Melatonin as a hormone: new physiological and clinical insights. Endocr Rev. 2018;39(6):990–1028.

    Article  Google Scholar 

  4. Talpur HS, Chandio IB, Brohi RD, Worku T, Rehman Z, Bhattarai D, et al. Research progress on the role of melatonin and its receptors in animal reproduction: a comprehensive review. Reprod Domest Anim. 2018;53(4):831–49.

    Article  CAS  Google Scholar 

  5. Yang C, Ran Z, Liu G, Hou R, He C, Liu Q, et al. Melatonin administration accelerates puberty onset in mice by promoting FSH synthesis. Molecules. 2021;26(5):1474–86.

  6. Reiter RJ, Sharma R. Central and peripheral actions of melatonin on reproduction in seasonal and continuous breeding mammals. Gen Comp Endocrinol. 2021;300:113620.

    Article  CAS  Google Scholar 

  7. Redins CA, Redins GM, Novaes JC. The effects of treatment with melatonin on the ultrastructure of mouse Leydig cells: a quantitative study. Braz J Biol. 2002;62(3):517–23.

    Article  CAS  Google Scholar 

  8. Ortiz A, Espino J, Bejarano I, Lozano GM, Monllor F, García JF, et al. High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. J Pineal Res. 2011;50(2):132–9.

    CAS  Google Scholar 

  9. Casao A, Vega S, Palacín I, Pérez-Pe R, Laviña A, Quintín FJ, et al. Effects of melatonin implants during non-breeding season on sperm motility and reproductive parameters in Rasa Aragonesa rams. Reprod Domest Anim. 2010;45(3):425–32.

    Article  CAS  Google Scholar 

  10. Kanter M. Protective effects of melatonin on testicular torsion/detorsion-induced ischemia-reperfusion injury in rats. Exp Mol Pathol. 2010;89(3):314–20.

    Article  CAS  Google Scholar 

  11. Yang M, Guan S, Tao J, Zhu K, Lv D, Wang J, et al. Melatonin promotes male reproductive performance and increases testosterone synthesis in mammalian Leydig cells†. Biol Reprod. 2021;104(6):1322–36.

    Article  Google Scholar 

  12. Pool KR, Rickard JP, Pini T, de Graaf SP. Exogenous melatonin advances the ram breeding season and increases testicular function. Sci Rep. 2020;10(1):9711.

    Article  CAS  Google Scholar 

  13. Ebbesen KK, Kjems J, Hansen TB. Circular RNAs: identification, biogenesis and function. Biochem Biophys Acta. 2016;1859(1):163–8.

    CAS  Google Scholar 

  14. Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. EMBO J. 2019;38(16):e100836.

    Article  Google Scholar 

  15. Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, et al. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 2015;365(2):141–8.

    Article  CAS  Google Scholar 

  16. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 2010;6(12):e1001233.

    Article  Google Scholar 

  17. Chen S, Li T, Zhao Q, Xiao B, Guo J. Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta. 2017;466:167–71.

    Article  CAS  Google Scholar 

  18. Hu D, Zhang P, Chen M. Database resources for functional circular RNAs. Methods Mol Biol (Clifton, NJ). 2021;2284:457–66.

    Article  CAS  Google Scholar 

  19. Xu Y, Chen F. Current status of functional studies on circular RNAs in rheumatoid arthritis and their potential role as diagnostic biomarkers. J Inflamm Res. 2021;14:1185–93.

    Article  CAS  Google Scholar 

  20. Lv MQ, Zhou L, Ge P, Li YX, Zhang J, Zhou DX. Over-expression of hsa_circ_0000116 in patients with non-obstructive azoospermia and its predictive value in testicular sperm retrieval. Andrology. 2020;8(6):1834–43.

    Article  CAS  Google Scholar 

  21. Manfrevola F, Chioccarelli T, Cobellis G, Fasano S, Ferraro B, Sellitto C, et al. CircRNA role and circRNA-dependent network (ceRNET) in asthenozoospermia. Front Endocrinol (Lausanne). 2020;11:395.

    Article  Google Scholar 

  22. Lu J, Luo Y, Mei S, Fang Y, Zhang J, Chen S. The effect of melatonin modulation of non-coding RNAs on central nervous system disorders: an updated review. Curr Neuropharmacol. 2021;19(1):3–23.

    Article  CAS  Google Scholar 

  23. Nam KI, Yoon G, Kim YK, Song J. Transcriptome analysis of pineal glands in the mouse model of Alzheimer’s disease. Front Mol Neurosci. 2019;12:318.

    Article  CAS  Google Scholar 

  24. Skene DJ, Swaab DF. Melatonin rhythmicity: effect of age and Alzheimer’s disease. Exp Gerontol. 2003;38(1–2):199–206.

    Article  CAS  Google Scholar 

  25. Gu J, Lu Z, Ji C, Chen Y, Liu Y, Lei Z, et al. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells. Biomed Pharmacother. 2017;93:969–75.

    Article  CAS  Google Scholar 

  26. Zhu X, Chen S, Jiang Y, Xu Y, Zhao Y, Chen L, et al. Analysis of miRNA expression profiles in melatonin-exposed GC-1 spg cell line. Gene. 2018;642:513–21.

    Article  CAS  Google Scholar 

  27. Li C, Chen S, Li H, Chen L, Zhao Y, Jiang Y, et al. MicroRNA-16 modulates melatonin-induced cell growth in the mouse-derived spermatogonia cell line GC-1 spg cells by targeting Ccnd1. Biol Reprod. 2016;95(3):57.

    Article  Google Scholar 

  28. Li C, Zhu X, Chen S, Chen L, Zhao Y, Jiang Y, et al. Melatonin promotes the proliferation of GC-1 spg cells by inducing metallothionein-2 expression through ERK1/2 signaling pathway activation. Oncotarget. 2017;8(39):65627–41.

    Article  Google Scholar 

  29. Li SY, Wang CY, Xiao YX, Tang XB, Yuan ZW, Bai YZ. RNA-Seq profiling of circular RNAs during development of hindgut in rat embryos with ethylene thiourea-induced anorectal malformations. Front Genet. 2021;12:605015.

    Article  CAS  Google Scholar 

  30. Team RC. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2013. Available from: http://www.R-project.org/.

  31. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28(1):27–30.

    Article  CAS  Google Scholar 

  32. Kotaja N. MicroRNAs and spermatogenesis. Fertil Steril. 2014;101(6):1552–62.

    Article  CAS  Google Scholar 

  33. Jang HY, Kim YH, Kim BW, Park IC, Cheong HT, Kim JT, et al. Ameliorative effects of melatonin against hydrogen peroxide-induced oxidative stress on boar sperm characteristics and subsequent in vitro embryo development. Reprod Domest Anim Zuchthygiene. 2010;45(6):943–50.

    Article  CAS  Google Scholar 

  34. Neto FT, Bach PV, Najari BB, Li PS, Goldstein M. Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol. 2016;59:10–26.

    Article  Google Scholar 

  35. Nishimura H, L’Hernault SW. Spermatogenesis. Curr Biol CB. 2017;27(18):R988–94.

    Article  CAS  Google Scholar 

  36. Meccariello R, Fasano S, Pierantoni R, Cobellis G. Modulators of hypothalamic-pituitary-gonadal axis for the control of spermatogenesis and sperm quality in vertebrates. Front Endocrinol. 2014;5:135.

    Article  Google Scholar 

  37. Dong WW, Li HM, Qing XR, Huang DH, Li HG. Identification and characterization of human testis derived circular RNAs and their existence in seminal plasma. Sci Rep. 2016;6:39080.

    Article  CAS  Google Scholar 

  38. Behram Kandemir Y, Aydin C, Gorgisen G. The effects of melatonin on oxidative stress and prevention of primordial follicle loss via activation of mTOR pathway in the rat ovary. Cell Mol Biol (Noisy-le-Grand, France). 2017;63(2):100–6.

    Article  CAS  Google Scholar 

  39. Uygur R, Aktas C, Caglar V, Uygur E, Erdogan H, Ozen OA. Protective effects of melatonin against arsenic-induced apoptosis and oxidative stress in rat testes. Toxicol Ind Health. 2016;32(5):848–59.

    Article  CAS  Google Scholar 

  40. Deng CY, Lv M, Luo BH, Zhao SZ, Mo ZC, Xie YJ. The role of the PI3K/AKT/mTOR signalling pathway in male reproduction. Curr Mol Med. 2021;21(7):539–48.

    CAS  Google Scholar 

  41. Wu Y, Ma J, Sun Y, Tang M, Kong L. Effect and mechanism of PI3K/AKT/mTOR signaling pathway in the apoptosis of GC-1 cells induced by nickel nanoparticles. Chemosphere. 2020;255:126913.

    Article  CAS  Google Scholar 

  42. Wang M, Wang XF, Li YM, Chen N, Fan Y, Huang WK, et al. Cross-talk between autophagy and apoptosis regulates testicular injury/recovery induced by cadmium via PI3K with mTOR-independent pathway. Cell Death Dis. 2020;11(1):46.

    Article  Google Scholar 

  43. Kazama A, Mano H, Morishita Y, Mori S. High expression of the tec gene product in murine testicular germ cells and erythroblasts. Pathol Int. 1996;46(5):341–7.

    Article  CAS  Google Scholar 

  44. Schmidt JA, Avarbock MR, Tobias JW, Brinster RL. Identification of glial cell line-derived neurotrophic factor-regulated genes important for spermatogonial stem cell self-renewal in the rat. Biol Reprod. 2009;81(1):56–66.

    Article  CAS  Google Scholar 

  45. Wang X, Li H, Lu Y, Cheng L. Regulatory effects of circular RNAs on host genes in human cancer. Front Oncol. 2020;10:586163.

    Article  Google Scholar 

  46. Wang Y, Wang Z, Lu J, Zhang H. Circular RNA circ-PTEN elevates PTEN inhibiting the proliferation of non-small cell lung cancer cells. Hum Cell. 2021;34(4):1174–84.

    Article  CAS  Google Scholar 

  47. Yao Y, Zhou Y, Hua Q. circRNA hsa_circ_0018414 inhibits the progression of LUAD by sponging miR-6807-3p and upregulating DKK1. Mol Ther Nucleic Acids. 2021;23:783–96.

    Article  CAS  Google Scholar 

  48. Chen J, Sun Y, Ou Z, Yeh S, Huang CP, You B, et al. Androgen receptor-regulated circFNTA activates KRAS signaling to promote bladder cancer invasion. EMBO Rep. 2020;21(4):e48467.

    Article  CAS  Google Scholar 

  49. He R, Liu P, Xie X, Zhou Y, Liao Q, Xiong W, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res CR. 2017;36(1):145.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Guangxi Natural Science Foundation Project (grant number 2020GXNSFAA159099); Nanning Jiangnan District Planning Project (grant number 202001206); Key R&D Plan of Science Research and Technology in Liangqing District of Nanning city (grant number 202009); Scientific Research and Technology Development Plan Project of Nanning (grant number 20213024); and Science and Technology Planning Project of Nanning Qingxiu District (grant number 2020025).

Author information

Authors and Affiliations

Authors

Contributions

Changlong Xu conceived and designed the experiments as well as drafted and substantively revised the manuscript; Hua Yang, Chunyuan Li, and Zhuo Wu performed the experiments and analyzed and interpreted the data; Yafeng Ma contributed to reinterpret the data and organize the figures.

Corresponding author

Correspondence to Changlong Xu.

Ethics declarations

Ethics Approval

Not applicable. No human or animal experiments were performed in this study.

Consent to Participate

Not applicable.

Consent for Publication

All authors have read and approved the manuscript for publication.

Competing Interests

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Yang, H., Li, C. et al. Melatonin Increases Proliferation and Decreases Apoptosis of GC-1 spg Cells by Upregulating the Expression of circTec. Reprod. Sci. 30, 135–144 (2023). https://doi.org/10.1007/s43032-022-00937-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00937-8

Keywords

Navigation