Skip to main content

Advertisement

Log in

Correlation Between Circulating Adropin Levels and Patients with PCOS: An Updated Systematic Review and Meta-analysis

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

An increasing number of young women suffer from polycystic ovary syndrome (PCOS). Reasonable diagnosis and monitoring are important steps in the treatment of PCOS. Therefore, we performed an updated meta-analysis between adropin levels and PCOS to identify their relationship. We searched 8 databases (Pubmed, EMBASE, Cochrane Library, CNKI, Wanfang, CBM, clinicaltrials.gov, OpenGrey) for relevant studies using the following search items: ‘PCOS or polycystic ovary syndrome or Stein-Leventhal syndrome’ AND ‘adropin’. Standardized mean difference (SMD) and 95% confidence intervals(CIs) were used as the outcomes. Data were analyzed using Revman 5.3, Stata 16, and MetaXL. Nineteen articles were include in this meta-analysis. The PCOS group had significantly lower adropin levels than the healthy groups (SMD = −2.79 ng/ml, 95%CI (−3.42, −2.16), p < 0.00001). Significant publication bias (p < 0.05) was observed; additionally, the results were robust based on metatrim and fail-safe number (Nfs). Meta-regression analysis showed that age, glucose ratio and luteinizing hormone (LH) may be sources of heterogeneity (univariate meta-regression analysis: P = 0.058 vs P = 0.026 vs P = 0.091). Furthermore, BMI, insulin, glucose, HOMA-IR, total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) may be closely related to adropin levels (p < 0.05) owing to meta-analysis of correlation coefficient. We found there was a correlation between adropin levels and PCOS: circulating adropin levels were significantly lower in patients with PCOS than healthy controls, which may be helpful for clinical diagnosis and detection of PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets supporting the conclusions of this article are included within the article and its additional files.

Code Availability

Not applicable.

Abbreviations

PCOS:

Polycystic ovary syndrome

SMD:

Standardized mean difference

CI:

Confidence intervals

NOS:

Newcastle–Ottawa Scale

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

BMI:

Body mass index

FSH:

Follicle-stimulating hormone

LH:

Luteinizing hormone

T:

Testosterone

TC:

Total cholesterol

TG:

Triglyceride

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

Nfs:

Fail-safe number

References

  1. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106:6–15.

    Article  Google Scholar 

  2. Pastoor H, Both S, Timman R, Laan ETM, Laven JSE. Sexual function in women with polycystic ovary syndrome: design of an Observational Prospective Multicenter Case Control Study. Sex Med. 2020;8:718–29.

    Article  Google Scholar 

  3. Naji M, Aleyasin A, Nekoonam S, Arefian E, Mahdian R, Amidi F. Differential expression of miR-93 and miR-21 in granulosa cells and follicular fluid of polycystic ovary syndrome associating with different phenotypes. Sci Rep. 2017;7:14671.

    Article  Google Scholar 

  4. Davies MJ, Marino JL, Willson KJ, March WA, Moore VM. Intergenerational associations of chronic disease and polycystic ovary syndrome. PLoS One. 2011;6:e25947.

    Article  CAS  Google Scholar 

  5. Azziz R. Polycystic Ovary Syndrome. Obstet Gynecol. 2018;132:321–36.

    Article  Google Scholar 

  6. Chen Y, Zheng X, Ma D, Zheng S, Han Y, Su W, Liu W, Xiao F, Lin M, Yan X, et al. Neck circumference is a good predictor for insulin resistance in women with polycystic ovary syndrome. Fertil Steril. 2021;115:753–60.

    Article  CAS  Google Scholar 

  7. Park HR, Kim JH, Lee D, Jo HG. Cangfu daotan decoction for polycystic ovary syndrome: a protocol of systematic review and meta-analysis. Medicine (Baltimore). 2019;98:e17321.

    Article  CAS  Google Scholar 

  8. Brnić D, Martinovic D, Zivkovic PM, Tokic D, Tadin Hadjina I, Rusic D, Vilovic M, Supe-Domic D, Tonkic A, Bozic J. Serum adropin levels are reduced in patients with inflammatory bowel diseases. Sci Rep. 2020;10:9264.

    Article  Google Scholar 

  9. Yosaee S, Khodadost M, Esteghamati A, Speakman JR, Shidfar F, Nazari MN, Bitarafan V, Djafarian K. Metabolic syndrome patients have lower levels of adropin when compared with healthy overweight/obese and lean subjects. Am J Mens Health. 2017;11:426–34.

    Article  Google Scholar 

  10. Marczuk N, Cecerska-Heryć E, Jesionowska A, Dołęgowska B. Adropin - physiological and pathophysiological role. Postepy Hig Med Dosw (Online). 2016;70:981–8.

    Article  Google Scholar 

  11. Varikasuvu SR, Reddy EP, Thangappazham B, Varshney S, Das VL, Munikumar M: Adropin levels and its associations as a fat-burning hormone in patients with polycystic ovary syndrome: a correlational meta-analysis. Gynecological Endocrinology 2021.

  12. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    Article  Google Scholar 

  13. Higgins JPT, Green S, Cochrane Collaboration 2008. Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Book Series.Wiley-Blackwell, Chichester, England; Hoboken, NJ.

  14. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003;327:557–60.

    Article  Google Scholar 

  15. Schmidt FL, Oh IS, Hayes TL. Fixed- versus random-effects models in meta-analysis: model properties and an empirical comparison of differences in results. Br J Math Stat Psychol. 2009;62:97–128.

    Article  Google Scholar 

  16. Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM: Advances in the meta-analysis of heterogeneous clinical trials II: The quality effects model. Contemp Clin Trials 2015, 45:123–129.

  17. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  Google Scholar 

  18. Chen Y, Li M, Deng H, Wang S, Chen L, Li N, Xu D, Wang Q. Impact of metformin on C-reactive protein levels in women with polycystic ovary syndrome: a meta-analysis. Oncotarget. 2017;8:35425–34.

    Article  Google Scholar 

  19. Peng Z, Sun Y, Lv X, Zhang H, Liu C, Dai S. Interleukin-6 levels in women with polycystic ovary syndrome: a systematic review and meta-analysis. PLoS One. 2016;11:e0148531.

    Article  Google Scholar 

  20. Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, Welt CK. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98:4565–92.

    Article  CAS  Google Scholar 

  21. Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev. 2015;36:487–525.

    Article  CAS  Google Scholar 

  22. Moghetti P, Tosi F. Insulin resistance and PCOS: chicken or egg? J Endocrinol Invest. 2021;44:233–44.

    Article  CAS  Google Scholar 

  23. Book CB, Dunaif A. Selective insulin resistance in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1999;84:3110–6.

    CAS  Google Scholar 

  24. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33:981–1030.

    Article  CAS  Google Scholar 

  25. Barber TM, Dimitriadis GK, Andreou A, Franks S. Polycystic ovary syndrome: insight into pathogenesis and a common association with insulin resistance. Clin Med (Lond). 2016;16:262–6.

    Article  Google Scholar 

  26. Barber TM, Franks S: Obesity and polycystic ovary syndrome. Clin Endocrinol (Oxf) 2021.

  27. Rice S, Christoforidis N, Gadd C, Nikolaou D, Seyani L, Donaldson A, Margara R, Hardy K, Franks S. Impaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries. Hum Reprod. 2005;20:373–81.

    Article  CAS  Google Scholar 

  28. Polak AM, Krentowska A, Łebkowska A, Buczyńska A, Adamski M, Adamska-Patruno E, Fiedorczuk J, Krętowski AJ, Kowalska I, Adamska A: The association of serum levels of leptin and ghrelin with the dietary fat content in non-obese women with polycystic ovary syndrome. Nutrients 2020, 12.

  29. Tang YL, Yu J, Zeng ZG, Liu Y, Liu JY, Xu JX. Circulating omentin-1 levels in women with polycystic ovary syndrome: a meta-analysis. Gynecol Endocrinol. 2017;33:244–9.

    Article  CAS  Google Scholar 

  30. Gao S, McMillan RP, Zhu Q, Lopaschuk GD, Hulver MW, Butler AA. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Mol Metab. 2015;4:310–24.

    Article  CAS  Google Scholar 

  31. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta M, Al-Omran M, Teoh H, Verma S. Adropin is a novel regulator of endothelial function. Circulation. 2010;122:S185-192.

    Article  CAS  Google Scholar 

  32. Chen X, Sun X, Shen T, Chen Q, Chen S, Pang J, Mi J, Tang Y, You Y, Xu H, Ling W. Lower adropin expression is associated with oxidative stress and severity of nonalcoholic fatty liver disease. Free Radic Biol Med. 2020;160:191–8.

    Article  CAS  Google Scholar 

  33. Zang H, Jiang F, Cheng X, Xu H, Hu X. Serum adropin levels are decreased in Chinese type 2 diabetic patients and negatively correlated with body mass index. Endocr J. 2018;65:685–91.

    Article  CAS  Google Scholar 

  34. Ali HA, Abbas HJ, Naser NA. Preptin and adropin levels as new predictor in women with polycystic ovary syndrome. J Pharm Sci Res. 2018;10:3005–8.

    CAS  Google Scholar 

  35. Bousmpoula A, Kouskouni E, Benidis E, Demeridou S, Kapeta-Kourkouli R, Chasiakou A, Baka S. Adropin levels in women with polycystic ovaries undergoing ovarian stimulation: correlation with lipoprotein lipid profiles. Gynecol Endocrinol. 2018;34:153–6.

    Article  CAS  Google Scholar 

  36. Dong QQ, Gu H. Changes and clinical significance of serum adropin and ghrelin levels in patients with polycystic ovary syndrome. Clinical Journal of Medical Officers. 2019;47:1390–2.

    CAS  Google Scholar 

  37. Fu XF. Correlation analysis of serum adropin, galectin-3 levels and insulin resistance index in patients with polycystic ovary syndrome. Experimental and Laboratory Medicine. 2019;37:725–7.

    CAS  Google Scholar 

  38. Hamdi RA, Abas HN, Alsaeed FAA. Role of adropin in women with polycystic ovary syndrome. Indian Journal of Public Health Research and Development. 2019;10:809–14.

    Article  Google Scholar 

  39. He XF, Wang QR, Yao H, Feng X, Zhang YL, Fu XF. The expression and clinical value of serum adropin in PCOS patients. Guangdong Medical Journal. 2017;38:1505–8.

    CAS  Google Scholar 

  40. Inal ZO, Erdem S, Gederet Y, Duran C, Kucukaydin Z, Kurku H, Sakarya DK. The impact of serum adropin and ischemia modified albumin levels based on BMI in PCOS. Endokrynol Pol. 2018;69:135–41.

    CAS  Google Scholar 

  41. Kuliczkowska-Płaksej J, Mierzwicka A, Jończyk M, Stachowska B, Urbanovych A, Bolanowski M. Adropin in women with polycystic ovary syndrome. Endokrynol Pol. 2019;70:151–6.

    Article  Google Scholar 

  42. Kume T, Calan M, Yilmaz O, Kocabas GU, Yesil P, Temur M, Bicer M, Calan OG. A possible connection between tumor necrosis factor alpha and adropin levels in polycystic ovary syndrome. J Endocrinol Invest. 2016;39:747–54.

    Article  CAS  Google Scholar 

  43. Li XJ. Correlation of serum vascular endothelial growth factor, endostatin, adropin protein levels with insulin resistance index in patients with polycystic ovary syndrome. Practical Clinical Medicine. 2019;20:43–4.

    CAS  Google Scholar 

  44. Liu P, Wen J, Zhao N, He Y, Yuan J: Changes of serum PTX-3 and adropin levels in pregnant women with PCOS and their correlation with clinical characteristics and left ventricular function. Chin J Diffic and Compl Cas 2020, 19:271–274+284.

  45. Şen H, Erbag G, Bınnetoglu E, Eroglu M, Turkon H, Tekin SZ, Asık M. Adropin levels in polycystic ovary syndrome patients. Journal of Clinical and Analytical Medicine. 2017;8:23–6.

    Google Scholar 

  46. Shen Y, He H, Zhang L. Application value of serum prostate-specific antigen adropin and anti Mullerian hormone in the diagnosis of polycystic ovary syndrome. Maternal and Child Health Care of China. 2021;36:1587–9.

    CAS  Google Scholar 

  47. Sun L, Pei SZ, Tan YM. The diagnostic efficacy of combined detection of serum VEGF, ES and adropin in polycystic ovary syndrome. Shandong Medical Journal. 2018;58:62–4.

    Google Scholar 

  48. Xi D, Zheng Y, Liu B, Kuang L, Ren Y, Gao Y. Effect of Adropin level in serum and follicular fluid on embryo development quality in patients with polycystic ovarian syndrome. Int J Lab Med. 2019;40:1968–72.

    Google Scholar 

  49. Wang JM, Mo Y. Association of serum adropin, visfatin and Haptoglobin levels with insulin resistance index in patients with polycystic ovary syndrome and its clinical significance. Int J Lab Med. 2018;39:2949–52.

    Google Scholar 

  50. Ye Z, Zhang C, Zhao Y. Potential effects of adropin on systemic metabolic and hormonal abnormalities in polycystic ovary syndrome. Reprod Biomed Online. 2021;42:1007–14.

    Article  CAS  Google Scholar 

  51. Bednarska S, Fryczak J, Siejka A. Serum β-Klotho concentrations are increased in women with polycystic ovary syndrome. Cytokine. 2020;134:155188.

    Article  CAS  Google Scholar 

  52. Yildirim B, Celik O, Aydin S. Adropin: a key component and potential gatekeeper of metabolic disturbances in policystic ovarian syndrome. Clin Exp Obstet Gynecol. 2014;41:310–2.

    Article  CAS  Google Scholar 

  53. Zhang Y, Lei J, Zhang J. Analysis of serum levels of adropin and Ghrelin of patients with polycystic ovary syndrome and its related factors. Chin J Fam Plann. 2018;26:1216–9.

    Google Scholar 

Download references

Acknowledgements

We would like to appreciate Xide Liu in Zhejiang Hospital of Integrated Traditional Chinese Medicine for his encouragement and support.

Author information

Authors and Affiliations

Authors

Contributions

S L: Study concept, design, drafting the article, final quality assessment of the included studies, making critical revisions. YN K and J H contributed equally to this work: quality assessment of the included studies, data collection, analysis, drafting the article, revision of the article. YQ Z and YQ W and SH C: data collection, analysis, making and modifying charts. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shan Liu.

Ethics declarations

Ethics Approval

All analyses were based on previously published studies; thus, no ethical approval is required.

Consent to Participate

None.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Yani Ke and Jie Hu are first co-authors of the article

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, Y., Hu, J., Zhu, Y. et al. Correlation Between Circulating Adropin Levels and Patients with PCOS: An Updated Systematic Review and Meta-analysis. Reprod. Sci. 29, 3295–3310 (2022). https://doi.org/10.1007/s43032-022-00841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00841-1

Keywords

Navigation