Skip to main content

Advertisement

Log in

Differential Distribution of Tryptophan-Metabolites in Fetal and Maternal Circulations During Normotensive and Preeclamptic Pregnancies

  • Maternal Fetal Medicine/Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Preeclampsia (PE) is a hypertensive pregnancy, which is a leading cause of maternal and fetal morbidity and mortality during pregnancy. L-Tryptophan (Trp) is an essential amino acid, which can be metabolized into various biologically active metabolites. However, the levels of many circulating Trp-metabolites in human normotensive pregnancies (NT) and PE are undetermined. This study quantified the levels of Trp-metabolites in maternal and umbilical vein sera from women with NT and PE. Paired maternal and umbilical blood samples were collected from singleton pregnant patients. Twenty-five Trp-metabolites were measured in serum samples using liquid chromatography with tandem mass spectrometry. The effects of L-kynurenine (Kyn) and indole-3-lactic acid (ILA), on function of human umbilical vein endothelial cells (HUVECs), were also determined. Twenty Trp-metabolites were detected. The levels of 9 Trp-metabolites including Kyn and ILA were higher (P < 0.05) in umbilical vein than maternal serum, whereas 2 (5-hydroxy-L-tryptophan and serotonin) were lower (P < 0.05) in umbilical vein compared to maternal serum. PE significantly (P < 0.05) elevated ILA levels in maternal and umbilical vein sera. Kyn dose-dependently decreased (P < 0.05) cell viability. Kyn and ILA dose- and time-dependently (P < 0.05) increased monolayer integrity in HUVECs. These data suggest that these Trp-metabolites are important in regulating endothelial function during pregnancy, and the elevated ILA in PE may antagonize increased endothelial permeability occurring in PE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Additional supporting data are available in the online-only Data Supplement.

References

  1. Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res. 2019;124:1094–112.

    Article  CAS  Google Scholar 

  2. Boeldt DS, Hankes AC, Alvarez RE, Khurshid N, Balistreri M, Grummer MA, Yi F, Bird IM. Pregnancy programming and preeclampsia: identifying a human endothelial model to study pregnancy-adapted endothelial function and endothelial adaptive failure in preeclamptic subjects. Adv Exp Med Biol. 2014;814:27–47.

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Gu Y, Zhang Y, Lewis DF. Evidence of endothelial dysfunction in preeclampsia: decreased endothelial nitric oxide synthase expression is associated with increased cell permeability in endothelial cells from preeclampsia. Am J Obstet Gynecol. 2004;190:817–24.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou C, Yan Q, Zou QY, Zhong XQ, Tyler CT, Magness RR, Bird IM, Zheng J. Sexual dimorphisms of preeclampsia-dysregulated transcriptomic profiles and cell function in fetal endothelial cells. Hypertension. 2019;74:154–63.

    Article  CAS  PubMed  Google Scholar 

  5. Addis R, Campesi I, Fois M, Capobianco G, Dessole S, Fenu G, Montella A, Cattaneo MG, Vicentini LM, Franconi F. Human umbilical endothelial cells (HUVECs) have a sex: characterisation of the phenotype of male and female cells. Biol Sex Differ. 2014;5:18.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rasiah RL, Addison RS, Roberts MS, Mortimer RH. An isolated perfused human placental lobule model for multiple indicator dilution studies. J Pharmacol Toxicol Methods. 1997;38:19.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou C, Zou Q-Y, Li H, Wang R-F, Liu A-X, Magness RR, Zheng J. Preeclampsia downregulates microRNAs in fetal endothelial cells: roles of miR-29a/c-3p in endothelial function. J Clin Endocrinol Metab. 2017;102:3470–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Platten M, Nollen EAA, Röhrig UF, Fallarino F, Opitz CA. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019;18:379–401.

    Article  CAS  PubMed  Google Scholar 

  9. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9:3294.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Badawy AA (2015) Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep 35

  11. Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn M, Changsirivathanathamrong D, Wu BJ, Ball HJ, Thomas SR, Kapoor V, Celermajer DS, Mellor AL, Keaney JF Jr, Hunt NH, Stocker R. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med. 2010;16:279–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li Y, Wang K, Zou Q-Y, Jiang Y-Z, Zhou C, Zheng J. ITE suppresses angiogenic responses in human artery and vein endothelial cells: differential roles of AhR. Reprod Toxicol. 2017;74:181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Y, Wang K, Zou QY, Magness RR, Zheng J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin differentially suppresses angiogenic responses in human placental vein and artery endothelial cells. Toxicology. 2015;336:70–8.

    Article  CAS  PubMed  Google Scholar 

  14. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010;185:3190–8.

    Article  CAS  PubMed  Google Scholar 

  15. Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP, Merriman J, Cortez VS, Caparon MG, Donia MS, Gilfillan S, Cella M, Gordon JI, Hsieh CS, Colonna M. Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8αα(+) T cells. Science. 2017;357:806–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mähler A, Balogh A, Markó L, Vvedenskaya O, Kleiner FH, Tsvetkov D, Klug L, Costea PI, Sunagawa S, Maier L, Rakova N, Schatz V, Neubert P, Frätzer C, Krannich A, Gollasch M, Grohme DA, Côrte-Real BF, Gerlach RG, Basic M, Typas A, Wu C, Titze JM, Jantsch J, Boschmann M, Dechend R, Kleinewietfeld M, Kempa S, Bork P, Linker RA, Alm EJ, Müller DN. Salt-responsive gut commensal modulates T(H)17 axis and disease. Nature. 2017;551:585–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sedlmayr P, Blaschitz A, Stocker R. The role of placental tryptophan catabolism. Front Immunol. 2014;5:230.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kudo Y, Boyd CA, Sargent IL, Redman CW. Decreased tryptophan catabolism by placental indoleamine 2,3-dioxygenase in preeclampsia. Am J Obstet Gynecol. 2003;188:719–26.

    Article  CAS  PubMed  Google Scholar 

  19. Broekhuizen M, Klein T, Hitzerd E, de Rijke YB, Schoenmakers S, Sedlmayr P, Danser AHJ, Merkus D, Reiss IKM. l-Tryptophan-induced vasodilation is enhanced in preeclampsia: studies on its uptake and metabolism in the human placenta. Hypertension. 2020;76:184–94.

    Article  CAS  PubMed  Google Scholar 

  20. Grafka AŁM, Karwasik-Kajszczarek K, Stasiak-Kosarzycka M, Dzida G. Plasma concentration of tryptophan and pregnancy-induced hypertension. Arterial Hypertension. 2018;22:9–15.

    Article  CAS  Google Scholar 

  21. Keaton SA, Heilman P, Bryleva EY, Madaj Z, Krzyzanowski S, Grit J, Miller ES, Jälmby M, Kalapotharakos G, Racicot K, Fazleabas A, Hansson SR, Brundin L. Altered tryptophan catabolism in placentas from women with pre-eclampsia. Int J Tryptophan Res. 2019;12:1178646919840321.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Santoso DI, Rogers P, Wallace EM, Manuelpillai U, Walker D, Subakir SB. Localization of indoleamine 2,3-dioxygenase and 4-hydroxynonenal in normal and pre-eclamptic placentae. Placenta. 2002;23:373–9.

    Article  CAS  PubMed  Google Scholar 

  23. Zardoya-Laguardia P, Blaschitz A, Hirschmugl B, Lang I, Herzog SA, Nikitina L, Gauster M, Häusler M, Cervar-Zivkovic M, Karpf E, Maghzal GJ, Stanley CP, Stocker R, Wadsack C, Frank S, Sedlmayr P. Endothelial indoleamine 2,3-dioxygenase-1 regulates the placental vascular tone and is deficient in intrauterine growth restriction and pre-eclampsia. Sci Rep. 2018;8:5488.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Worton SA, Pritchard HAT, Greenwood SL, Alakrawi M, Heazell AEP, Wareing M, Greenstein A, Myers JE. Kynurenine relaxes arteries of normotensive women and those with preeclampsia. Circ Res. 2021;128:1679–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taniguchi K, Okatani Y, Sagara Y. Serotonin metabolism in the fetus in preeclampsia. Asia Oceania J Obstet Gynaecol. 1994;20:77–86.

    Article  CAS  PubMed  Google Scholar 

  26. Middelkoop CM, Dekker GA, Kraayenbrink AA, Popp-Snijders C. Platelet-poor plasma serotonin in normal and preeclamptic pregnancy. Clin Chem. 1993;39:1675–8.

    Article  CAS  PubMed  Google Scholar 

  27. Jia L, Zhou X, Huang X, Xu X, Jia Y, Wu Y, Yao J, Wu Y, Wang K. Maternal and umbilical cord serum-derived exosomes enhance endothelial cell proliferation and migration. Faseb j. 2018;32:4534–43.

    Article  CAS  PubMed  Google Scholar 

  28. Zou QY, Zhao YJ, Li H, Wang XZ, Liu AX, Zhong XQ, Yan Q, Li Y, Zhou C, Zheng J. GNA11 differentially mediates fibroblast growth factor 2- and vascular endothelial growth factor A-induced cellular responses in human fetoplacental endothelial cells. J Physiol. 2018;596:2333–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou YJ, Yuan ML, Li R, Zhu LP, Chen ZH. Real-time placental perfusion on contrast-enhanced ultrasound and parametric imaging analysis in rats at different gestation time and different portions of placenta. PLoS One. 2013;8:e58986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zou QY, Zhao YJ, Zhou C, Liu AX, Zhong XQ, Yan Q, Li Y, Yi FX, Bird IM, Zheng J. G protein α subunit 14 mediates fibroblast growth factor 2-induced cellular responses in human endothelial cells. J Cell Physiol. 2019;234:10184–95.

    Article  CAS  PubMed  Google Scholar 

  31. Williams RL, Creasy RK, Cunningham GC, Hawes WE, Norris FD, Tashiro M. Fetal growth and perinatal viability in California. Obstet Gynecol. 1982;59:624–32.

    CAS  PubMed  Google Scholar 

  32. Zhu L, Zhang R, Zhang S, Shi W, Yan W, Wang X, Lyu Q, Liu L, Zhou Q, Qiu Q, Li X, He H, Wang J, Li R, Lu J, Yin Z, Su P, Lin X, Guo F, Zhang H, Li S, Xin H, Han Y, Wang H, Chen D, Li Z, Wang H, Qiu Y, Liu H, Yang J, Yang X, Li M, Li W, Han S, Cao B, Yi B, Zhang Y, Chen C. Chinese neonatal birth weight curve for different gestational age. Zhonghua Er Ke Za Zhi. 2015;53:97–103.

    PubMed  Google Scholar 

  33. Nilsen RM, Bjørke-Monsen AL, Midttun O, Nygård O, Pedersen ER, Ulvik A, Magnus P, Gjessing HK, Vollset SE, Ueland PM. Maternal tryptophan and kynurenine pathway metabolites and risk of preeclampsia. Obstet Gynecol. 2012;119:1243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Picone TA, Daniels TA, Ponto KH, Pittard WB 3rd. Cord blood tryptophan concentrations and total cysteine concentrations. JPEN J Parenter Enteral Nutr. 1989;13:106–7.

    Article  CAS  PubMed  Google Scholar 

  35. Carretti N, Bertazzo A, Comai S, Costa CV, Allegri G, Petraglia F. Serum tryptophan and 5-hydroxytryptophan at birth and during post-partum days. Adv Exp Med Biol. 2003;527:757–60.

    Article  CAS  PubMed  Google Scholar 

  36. Eguchi K, Kamimura S, Yonezawa M, Mitsui Y, Mizutani Y, Kudo T. Tryptophan and its metabolite concentrations in human plasma during the perinatal period. Nihon Sanka Fujinka Gakkai Zasshi. 1992;44:663–8.

    CAS  PubMed  Google Scholar 

  37. Kazda H, Taylor N, Healy D, Walker D. Maternal, umbilical, and amniotic fluid concentrations of tryptophan and kynurenine after labor or cesarean section. Pediatr Res. 1998;44:368–73.

    Article  CAS  PubMed  Google Scholar 

  38. Nakamura Y, Tamura H, Kashida S, Takayama H, Yamagata Y, Karube A, Sugino N, Kato H. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. J Pineal Res. 2001;30:29–33.

    Article  CAS  PubMed  Google Scholar 

  39. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716–24.

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Zhou C, Lei W, Wang K, Zheng J (2020) Roles of aryl hydrocarbon receptor in endothelial angiogenic responses†. Biol Reprod

  41. Wong CB, Tanaka A, Kuhara T, Xiao JZ (2020) Potential effects of indole-3-lactic acid, a metabolite of human bifidobacteria, on NGF-induced neurite outgrowth in PC12 cells. Microorganisms 8

  42. Suzuki Y, Kosaka M, Shindo K, Kawasumi T, Kimoto-Nira H, Suzuki C. Identification of antioxidants produced by Lactobacillus plantarum. Biosci Biotechnol Biochem. 2013;77:1299–302.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou C, Zou QY, Jiang YZ, Zheng J. Role of oxygen in fetoplacental endothelial responses: hypoxia, physiological normoxia, or hyperoxia? Am J Physiol Cell Physiol. 2020;318:C943-c953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nguyen LP, Bradfield CA. The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol. 2008;21:102–16.

    Article  CAS  PubMed  Google Scholar 

  45. Mor A, Kalaska B, Pawlak D. Kynurenine pathway in chronic kidney disease: what’s old, what’s new, and what’s next? International Journal of Tryptophan Research. 2020;13:1178646920954882.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Korstanje R, Deutsch K, Bolanos-Palmieri P, Hanke N, Schroder P, Staggs L, Bräsen JH, Roberts IS, Sheehan S, Savage H, Haller H, Schiffer M. Loss of kynurenine 3-mono-oxygenase causes proteinuria. J Am Soc Nephrol. 2016;27:3271–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Laura Hogan, Ph.D., a Science Writer/Editor with the UW ICTR, for critically reading and editing this manuscript. We also thank Ms. Susanna Zheng, UW-Madison, for preparing the figure for this publication.

Funding

This study is supported by the NIH grants RO3 HD100778 (CZ), as well as American Heart Association awards 17POST33670283 and 19CDA34660348 (CZ). The project was also supported by Translational Basic and Clinical Pilot Award (JZ and CZ) from the UW Institute for Clinical and Translational Research (ICTR) and the Clinical and Translational Science Award program, through the NIH National Center for Advancing Translational Sciences, grant UL1TR002373.

Author information

Authors and Affiliations

Authors

Contributions

LW, KW, and JZ conceived the study. YYW and WK prepared blood serum samples. YJZ, CZ, HHL, DSB, and JZ prepared HUVECs, analyzed the data, and performed statistics. YJZ, CZ, HHL, WL, DSB, KW, and JZ wrote the manuscript. All authors revised the manuscript and approved the final manuscript.

Corresponding authors

Correspondence to Kai Wang or Jing Zheng.

Ethics declarations

Ethics Approval

All procedures were conducted in accordance with the Declaration of Helsinki. All the tissue samples were collected with written informed consent. The blood sample collection was approved by the Scientific and Ethical Committee of Shanghai First Maternity and Infant Hospital, Tongji University (Protocol number: KS2013, approved on April 20, 2020). For HUVECs, the umbilical cord collection was approved by the Institutional Review Board of Meriter Hospital, and the Health Sciences Institutional Review Boards of the University of Wisconsin-Madison (Protocol number 2004–006, approved on July 26, 2018).

Consent to Participate

All patients consented to participate and for publication with de-identified patients’ information.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Supplementary file2 (PDF 194 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Yj., Zhou, C., Wei, Yy. et al. Differential Distribution of Tryptophan-Metabolites in Fetal and Maternal Circulations During Normotensive and Preeclamptic Pregnancies. Reprod. Sci. 29, 1278–1286 (2022). https://doi.org/10.1007/s43032-021-00759-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00759-0

Keywords

Navigation