Skip to main content
Log in

Engineering Functional Rat Ovarian Spheroids Using Granulosa and Theca Cells

  • Regenerative Medicine: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Although menopausal hormone therapy (MHT) is the most effective approach to managing the loss of ovarian activity, serious side effects have been reported. Cell-based therapy is a promising alternative for MHT. This study constructed engineered ovarian cell spheroids and investigated their endocrine function. Theca and granulosa cells were isolated from ovaries of 10-week-old rats. Two types of engineered ovarian cell spheroids were fabricated through forced aggregation in microwells, multilayered spheroids with centralized granulosa aggregates surrounded by an outer layer of theca cells and mixed ovarian spheroids lacking spatial rearrangement. The ovarian cell spheroids were encapsulated into a collagen gel. Non-aggregated ovarian cells served as controls. The endocrine function of the engineered ovarian spheroids was assessed over 30 days. The structure of the spheroids was well maintained during culture. The secretion of 17β-estradiol from both types of engineered ovarian cell spheroids was higher than in the control group and increased continuously in a time-dependent manner. Secretion of 17β-estradiol in the multi-layered ovarian cell spheroids was higher than in the non-layered constructs. Increased secretion of progesterone was detected in the multi-layered ovarian cell spheroids at day 5 of culture and was sustained during the culture period. The initial secretion level of progesterone in the non-layered ovarian cell spheroids was similar to those from the controls and increased significantly from days 21 to 30. An in vitro rat model of engineered ovarian cell spheroids was developed that was capable of secreting sex steroid hormones, indicating that the hormone secreting function of ovaries can be recapitulated ex vivo and potentially adapted for MHT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. North American Menopause S. The 2012 hormone therapy position statement of: the North American Menopause Society. Menopause. 2012;19(3):257–71. https://doi.org/10.1097/gme.0b013e31824b970a.

    Article  Google Scholar 

  2. Tsiligiannis S, Panay N, Stevenson JC. Premature ovarian insufficiency and long-term health consequences. Curr Vasc Pharmacol. 2019;17(6):604–9. https://doi.org/10.2174/1570161117666190122101611.

    Article  CAS  PubMed  Google Scholar 

  3. Jiao X, Zhang H, Ke H, Zhang J, Cheng L, Liu Y, et al. Premature ovarian insufficiency: phenotypic characterization within different etiologies. J Clin Endocrinol Metab. 2017;102(7):2281–90. https://doi.org/10.1210/jc.2016-3960.

    Article  PubMed  Google Scholar 

  4. Chen Y, Nguyen DT, Kokil GR, Wong YX, Dang TT. Microencapsulated islet-like microtissues with toroid geometry for enhanced cellular viability. Acta Biomater. 2019;97:260–71. https://doi.org/10.1016/j.actbio.2019.08.018.

    Article  CAS  PubMed  Google Scholar 

  5. Espona-Noguera A, Ciriza J, Canibano-Hernandez A, Orive G, Hernandez RMM, Saenz Del Burgo L, et al. Review of advanced hydrogel-based cell encapsulation systems for insulin delivery in type 1 diabetes mellitus. Pharmaceutics. 2019;11(11). https://doi.org/10.3390/pharmaceutics11110597.

  6. Stock AA, Manzoli V, De Toni T, Abreu MM, Poh YC, Ye L, et al. Conformal coating of stem cell-derived islets for beta cell replacement in type 1 diabetes. Stem Cell Reports. 2020;14(1):91–104. https://doi.org/10.1016/j.stemcr.2019.11.004.

    Article  CAS  PubMed  Google Scholar 

  7. Ding X, Wang S, Jin W, Liu X, Chen J, Chen S. Encapsulation of a nanoporous simvastatin-chitosan composite to enhance osteointegration of hydroxyapatite-coated polyethylene terephthalate ligaments. Int J Nanomedicine. 2019;14:4881–93. https://doi.org/10.2147/ijn.S210687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leslie SK, Cohen DJ, Boyan BD, Schwartz Z. Production of osteogenic and angiogenic factors by microencapsulated adipose stem cells varies with culture conditions. J Biomed Mater Res B Appl Biomater. 2019;108:1857–67. https://doi.org/10.1002/jbm.b.34527.

    Article  CAS  PubMed  Google Scholar 

  9. Nadine S, Patrício SG, Correia CR, Mano JF. Dynamic microfactories co-encapsulating osteoblastic and adipose-derived stromal cells for the biofabrication of bone units. Biofabrication. 2019;12(1):015005. https://doi.org/10.1088/1758-5090/ab3e16.

    Article  CAS  PubMed  Google Scholar 

  10. Amiri A, Mousakhani-Ganjeh A, Amiri Z, Guo YG, Pratap Singh A, Esmaeilzadeh KR. Fabrication of cumin loaded-chitosan particles: characterized by molecular, morphological, thermal, antioxidant and anticancer properties as well as its utilization in food system. Food Chem. 2020;310:125821. https://doi.org/10.1016/j.foodchem.2019.125821.

    Article  CAS  PubMed  Google Scholar 

  11. Fathi M, Barar J, Erfan-Niya H, Omidi Y. Methotrexate-conjugated chitosan-grafted pH- and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer. Int J Biol Macromol. 2019;154:1175–84. https://doi.org/10.1016/j.ijbiomac.2019.10.272.

    Article  CAS  PubMed  Google Scholar 

  12. Gao J, Liu J, Xie F, Lu Y, Yin C, Shen X. Co-delivery of docetaxel and salinomycin to target both breast cancer cells and stem cells by PLGA/TPGS nanoparticles. Int J Nanomedicine. 2019;14:9199–216. https://doi.org/10.2147/ijn.S230376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang Y, Li J, Chen F, Qiao S, Li Y, Pan W. Synthesis, formulation, and characterization of doxorubicin-loaded laponite/oligomeric hyaluronic acid-aminophenylboronic acid nanohybrids and cytological evaluation against MCF-7 breast cancer cells. AAPS PharmSciTech. 2019;21(1):5. https://doi.org/10.1208/s12249-019-1533-6.

    Article  CAS  PubMed  Google Scholar 

  14. Zhuang J, Holay M, Park JH, Fang RH, Zhang J, Zhang L. Nanoparticle delivery of immunostimulatory agents for cancer immunotherapy. Theranostics. 2019;9(25):7826–48. https://doi.org/10.7150/thno.37216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo XX, Zhou JL, Xu Q, Lu X, Liang YJ, Weng J, et al. Prevention of osteoporosis in mice after ovariectomy via allograft of microencapsulated ovarian cells. Anatomical Record (Hoboken, NJ : 2007). 2010;293(2):200–7. https://doi.org/10.1002/ar.21036.

    Article  CAS  Google Scholar 

  16. Liu C, Luan X, He Y, Xia X, Sun L, Miao W, et al. Endogenous release of female hormones from co-microencapsulated rat granulosa and theca cells. Biomed Microdevices. 2014;16(2):209–16. https://doi.org/10.1007/s10544-013-9824-2.

    Article  CAS  PubMed  Google Scholar 

  17. Sittadjody S, Enck KM, Wells A, Yoo JJ, Atala A, Saul JM, et al. Encapsulation of mesenchymal stem cells in 3D ovarian cell constructs promotes stable and long-term hormone secretion with improved physiological outcomes in a syngeneic rat model. Ann Biomed Eng. 2020;48(3):1058–70. https://doi.org/10.1007/s10439-019-02334-w.

    Article  PubMed  Google Scholar 

  18. Sittadjody S, Saul JM, Joo S, Yoo JJ, Atala A, Opara EC. Engineered multilayer ovarian tissue that secretes sex steroids and peptide hormones in response to gonadotropins. Biomaterials. 2013;34(10):2412–20. https://doi.org/10.1016/j.biomaterials.2012.11.059.

    Article  CAS  PubMed  Google Scholar 

  19. Sittadjody S, Saul JM, Opara EC. Compartmentalization of two cell types in multilayered alginate microcapsules. Methods Mol Biol. 2017;1479:225–35. https://doi.org/10.1007/978-1-4939-6364-5_18.

    Article  CAS  PubMed  Google Scholar 

  20. Pesl M, Acimovic I, Pribyl J, Hezova R, Vilotic A, Fauconnier J, et al. Forced aggregation and defined factors allow highly uniform-sized embryoid bodies and functional cardiomyocytes from human embryonic and induced pluripotent stem cells. Heart Vessel. 2014;29(6):834–46. https://doi.org/10.1007/s00380-013-0436-9.

    Article  Google Scholar 

  21. Hummitzsch K, Ricken AM, Kloss D, Erdmann S, Nowicki MS, Rothermel A, et al. Spheroids of granulosa cells provide an in vitro model for programmed cell death coupled to steroidogenesis. Differentiation. 2009;77(1):60–9. https://doi.org/10.1016/j.diff.2008.09.002.

    Article  CAS  PubMed  Google Scholar 

  22. Ayala P, Caves J, Dai E, Siraj L, Liu L, Chaudhuri O, et al. Engineered composite fascia for stem cell therapy in tissue repair applications. Acta Biomater. 2015;26:1–12. https://doi.org/10.1016/j.actbio.2015.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Freedman BR, Mooney DJ. Biomaterials to mimic and heal connective tissues. Adv Mater. 2019;31(19):e1806695. https://doi.org/10.1002/adma.201806695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Torrance C, Telfer E, Gosden RG. Quantitative study of the development of isolated mouse pre-antral follicles in collagen gel culture. J Reprod Fertil. 1989;87(1):367–74. https://doi.org/10.1530/jrf.0.0870367.

    Article  CAS  PubMed  Google Scholar 

  25. Hirao Y, Nagai T, Kubo M, Miyano T, Miyake M, Kato S. In vitro growth and maturation of pig oocytes. J Reprod Fertil. 1994;100(2):333–9. https://doi.org/10.1530/jrf.0.1000333.

    Article  CAS  PubMed  Google Scholar 

  26. Alm H, Katska-Ksiazkiewicz L, Ryńska B, Tuchscherer A. Survival and meiotic competence of bovine oocytes originating from early antral ovarian follicles. Theriogenology. 2006;65(7):1422–34. https://doi.org/10.1016/j.theriogenology.2005.08.014.

    Article  CAS  PubMed  Google Scholar 

  27. Abir R, Roizman P, Fisch B, Nitke S, Okon E, Orvieto R, et al. Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Hum Reprod. 1999;14(5):1299–301. https://doi.org/10.1093/humrep/14.5.1299.

    Article  CAS  PubMed  Google Scholar 

  28. Combelles CM, Fissore RA, Albertini DF, Racowsky C. In vitro maturation of human oocytes and cumulus cells using a co-culture three-dimensional collagen gel system. Hum Reprod. 2005;20(5):1349–58. https://doi.org/10.1093/humrep/deh750.

    Article  CAS  PubMed  Google Scholar 

  29. Joo S, Oh SH, Sittadjody S, Opara EC, Jackson JD, Lee SJ, et al. The effect of collagen hydrogel on 3D culture of ovarian follicles. Biomed Mater. 2016;11(6):065009. https://doi.org/10.1088/1748-6041/11/6/065009.

    Article  CAS  PubMed  Google Scholar 

  30. Magoffin DA, Erickson GF. An improved method for primary culture of ovarian androgen-producing cells in serum-free medium: effect of lipoproteins, insulin, and insulinlike growth factor-I. In Vitro Cell Dev Biol. 1988;24(9):862–70. https://doi.org/10.1007/bf02623895.

    Article  CAS  PubMed  Google Scholar 

  31. Magoffin DA, Erickson GF. Purification of ovarian theca-interstitial cells by density gradient centrifugation. Endocrinology. 1988;122(5):2345–7. https://doi.org/10.1210/endo-122-5-2345.

    Article  CAS  PubMed  Google Scholar 

  32. Lobo RA, Davis SR, De Villiers TJ, Gompel A, Henderson VW, Hodis HN, et al. Prevention of diseases after menopause. Climacteric. 2014;17(5):540–56. https://doi.org/10.3109/13697137.2014.933411.

    Article  CAS  PubMed  Google Scholar 

  33. Cesarz Z, Tamama K. Spheroid culture of mesenchymal stem cells. Stem Cells Int. 2016;2016:9176357–11. https://doi.org/10.1155/2016/9176357.

    Article  PubMed  Google Scholar 

  34. Pettinato G, Wen X, Zhang N. Formation of well-defined embryoid bodies from dissociated human induced pluripotent stem cells using microfabricated cell-repellent microwell arrays. Sci Rep. 2014;4:7402. https://doi.org/10.1038/srep07402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu WF, Chen CS. Cellular and multicellular form and function. Adv Drug Deliv Rev. 2007;59(13):1319–28. https://doi.org/10.1016/j.addr.2007.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Albertini DF, Anderson E. The appearance and structure of intercellular connections during the ontogeny of the rabbit ovarian follicle with particular reference to gap junctions. J Cell Biol. 1974;63(1):234–50. https://doi.org/10.1083/jcb.63.1.234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vanacker J, Luyckx V, Dolmans MM, Des Rieux A, Jaeger J, Van Langendonckt A, et al. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials. 2012;33(26):6079–85. https://doi.org/10.1016/j.biomaterials.2012.05.015.

    Article  CAS  PubMed  Google Scholar 

  38. Amsterdam A, Plehn-Dujowich D, Suh BS. Structure-function relationships during differentiation of normal and oncogene-transformed granulosa cells. Biol Reprod. 1992;46(4):513–22. https://doi.org/10.1095/biolreprod46.4.513.

    Article  CAS  PubMed  Google Scholar 

  39. Mueller-Klieser W. Multicellular spheroids. A review on cellular aggregates in cancer research. J Cancer Res Clin Oncol. 1987;113(2):101–22. https://doi.org/10.1007/bf00391431.

    Article  CAS  PubMed  Google Scholar 

  40. Sego TJ, Kasacheuski U, Hauersperger D, Tovar A, Moldovan NI. A heuristic computational model of basic cellular processes and oxygenation during spheroid-dependent biofabrication. Biofabrication. 2017;9(2):024104. https://doi.org/10.1088/1758-5090/aa6ed4.

    Article  CAS  PubMed  Google Scholar 

  41. Xu M, Kreeger PK, Shea LD, Woodruff TK. Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 2006;12(10):2739–46. https://doi.org/10.1089/ten.2006.12.2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yalcinkaya TM, Sittadjody S, Opara EC. Scientific principles of regenerative medicine and their application in the female reproductive system. Maturitas. 2014;77(1):12–9. https://doi.org/10.1016/j.maturitas.2013.10.007.

    Article  PubMed  Google Scholar 

  43. Hernández RM, Orive G, Murua A, Pedraz JL. Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev. 2010;62(7–8):711–30. https://doi.org/10.1016/j.addr.2010.02.004.

    Article  CAS  PubMed  Google Scholar 

  44. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210(4472):908–10. https://doi.org/10.1126/science.6776628.

    Article  CAS  PubMed  Google Scholar 

  45. Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26(15):2455–65. https://doi.org/10.1016/j.biomaterials.2004.06.044.

    Article  CAS  PubMed  Google Scholar 

  46. Mazzitelli S, Luca G, Mancuso F, Calvitti M, Calafiore R, Nastruzzi C, et al. Production and characterization of engineered alginate-based microparticles containing ECM powder for cell/tissue engineering applications. Acta Biomater. 2011;7(3):1050–62. https://doi.org/10.1016/j.actbio.2010.10.005.

    Article  CAS  PubMed  Google Scholar 

  47. Tan WH, Takeuchi S. Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads. Lab Chip. 2008;8(2):259–66. https://doi.org/10.1039/b714573j.

    Article  CAS  PubMed  Google Scholar 

  48. Smith AM, Hunt NC, Shelton RM, Birdi G, Grover LM. Alginate hydrogel has a negative impact on in vitro collagen 1 deposition by fibroblasts. Biomacromolecules. 2012;13(12):4032–8. https://doi.org/10.1021/bm301321d.

    Article  CAS  PubMed  Google Scholar 

  49. Lee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials. 2001;22(23):3145–54. https://doi.org/10.1016/s0142-9612(01)00067-9.

    Article  CAS  PubMed  Google Scholar 

  50. Meidan R, Girsh E, Blum O, Aberdam E. In vitro differentiation of bovine theca and granulosa cells into small and large luteal-like cells: morphological and functional characteristics. Biol Reprod. 1990;43(6):913–21. https://doi.org/10.1095/biolreprod43.6.913.

    Article  CAS  PubMed  Google Scholar 

  51. Luck MR. Cholinergic stimulation, through muscarinic receptors, of oxytocin and progesterone secretion from bovine granulosa cells undergoing spontaneous luteinization in serum-free culture. Endocrinology. 1990;126(2):1256–63. https://doi.org/10.1210/endo-126-2-1256.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Jack and Pamela Egan.

Author information

Authors and Affiliations

Authors

Contributions

Myung Jae Jeon, Young Sik Choi, Anthony Atala, James J. Yoo, and John D. Jackson contributed to study conception and design. Myung Jae Jeon, Young Sik Choi, and Il Dong Kim prepared materials, conducted experiments, and analyzed data. Myung Jae Jeon and Young Sik Choi wrote the first draft of the manuscript. Tracy Criswell, Il Dong Kim, Anthony Atala, James J. Yoo, and John D. Jackson reviewed and commented on previous versions of the manuscript.

Corresponding author

Correspondence to John D. Jackson.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Research Involving Human Participants and/or Animals

No humans or human tissues were used in this research. All animal studies were conducted with the approval of the Wake Forest University Health Sciences Animal Care and Use committee. The IACUC protocol number is A14-126.

Informed Consent

No humans or human tissue were used in this study.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, M.J., Choi, Y.S., Kim, I.D. et al. Engineering Functional Rat Ovarian Spheroids Using Granulosa and Theca Cells. Reprod. Sci. 28, 1697–1708 (2021). https://doi.org/10.1007/s43032-020-00445-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00445-7

Keywords

Navigation