Skip to main content

Advertisement

Log in

Altered microRNA Profiles of Extracellular Vesicles Secreted by Endometrial Cells from Women with Recurrent Implantation Failure

  • Infertility: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Recurrent implantation failure (RIF) is characterized by repeated embryo transfers without pregnancy. To date, the etiology of RIF remains poorly understood. Accumulating evidence indicates a beneficial role of endometrial extracellular vesicles (EVs) during the implantation by delivering signaling molecules to embryos, especially miRNAs. However, whether EVs secreted by RIF patients’ endometria have a similar miRNA expression profile of endometrial EVs of fertile women has not been investigated. Therefore, in this study, we compared the miRNA expression profiles between the endometrial EVs of RIF patients (RIF-EVs) and fertile women (FER-EVs). Endometrial tissues from fifteen RIF patients and nine fertile women were collected and digested to cells for culture. Endometrial cells were modulated by estrogen and progesterone to mimic the secretory phase, and the conditioned medium was collected for EV isolation. EVs were determined by western blotting, nanoparticle tracking analysis, and transmission electronic microscopy (TEM). Three pairs of EV samples from two groups were used for miRNA sequencing, and twelve RIF-EV samples and six FER-EV samples were used for validation using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results showed that a total of 11 miRNAs were differently expressed in the RIF-EVs. Besides, four of the differently expressed miRNAs were validated using qRT-PCR. Target genes of the differently expressed miRNAs were predicted, and the functional analysis was performed. Besides, we proved that the most significantly different miRNA, 6131, inhibited the growth and invasion of HTR8/SVneo cells. Our study suggested that the altered miRNAs in the RIF-EVs might be involved in the pathogenesis of RIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bashiri A, Halper KI, Orvieto R. Recurrent implantation failure-update overview on etiology, diagnosis, treatment and future directions. Reprod Biol Endocrinol. 2018;16(1):121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hashimoto T, Koizumi M, Doshida M, Toya M, Sagara E, Oka N, et al. Efficacy of the endometrial receptivity array for repeated implantation failure in Japan: a retrospective, two-centers study. Reprod Med Biol. 2017;16(3):290–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sheikhansari G, Soltani-Zangbar MS, Pourmoghadam Z, Kamrani A, Azizi R, Aghebati-Maleki L, et al. Oxidative stress, inflammatory settings, and microRNA regulation in the recurrent implantation failure patients with metabolic syndrome. Am J Reprod Immunol. 2019;82(4):e13170.

    Article  PubMed  Google Scholar 

  4. Sebastian-Leon P, Garrido N, Remohi J, Pellicer A, Diaz-Gimeno P. Asynchronous and pathological windows of implantation: two causes of recurrent implantation failure. Hum Reprod. 2018;33(4):626–35.

    Article  CAS  PubMed  Google Scholar 

  5. Koot YEM, Hviid Saxtorph M, Goddijn M, de Bever S, Eijkemans MJC, Wely MV, et al. What is the prognosis for a live birth after unexplained recurrent implantation failure following IVF/ICSI? Hum Reprod. 2019;34(10):2044–52.

    Article  CAS  PubMed  Google Scholar 

  6. Kong S, Zhou C, Bao H, Ni Z, Liu M, He B, et al. Epigenetic control of embryo-uterine crosstalk at peri-implantation. Cell Mol Life Sci. 2019;76(24):4813–28.

    Article  CAS  PubMed  Google Scholar 

  7. Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12(6):731–46.

    Article  PubMed  Google Scholar 

  8. Zhao S, Qi W, Zheng J, Tian Y, Qi X, Kong D, et al. Exosomes derived from adipose mesenchymal stem cells restore functional endometrium in a rat model of intrauterine adhesions. Reprod Sci. 2020;27(6):1266–75.

    Article  CAS  PubMed  Google Scholar 

  9. Koler M, Achache H, Tsafrir A, Smith Y, Revel A, Reich R. Disrupted gene pattern in patients with repeated in vitro fertilization (IVF) failure. Hum Reprod. 2009;24(10):2541–8.

    Article  CAS  PubMed  Google Scholar 

  10. Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod. 2011;26(10):2830–40.

    Article  CAS  PubMed  Google Scholar 

  11. Bielfeld AP, Pour SJ, Poschmann G, Stuhler K, Krussel JS, Baston-Bust DM. A proteome approach reveals differences between fertile women and patients with repeated implantation failure on endometrial leveldoes hCG render the endometrium of RIF patients? Int J Mol Sci. 2019;20(2):425.

    Article  PubMed Central  Google Scholar 

  12. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006;20(9):1487–95.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu Z, Zhang Y, Zhang Y, Zhang H, Liu W, Zhang N, et al. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate growth of VK2 vaginal epithelial cells through microRNAs in vitro. Hum Reprod. 2019;34(2):248–60.

    Article  CAS  PubMed  Google Scholar 

  14. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

    Article  CAS  PubMed  Google Scholar 

  15. Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016;6(4):287–96.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Properzi F, Logozzi M, Fais S. Exosomes: the future of biomarkers in medicine. Biomark Med. 2013;7(5):769–78.

    Article  CAS  PubMed  Google Scholar 

  17. Vyas P, Balakier H, Librach CL. Ultrastructural identification of CD9 positive extracellular vesicles released from human embryos and transported through the zona pellucida. Syst Biol Reprod Med. 2019;65(4):273–80.

    Article  PubMed  Google Scholar 

  18. Giacomini E, Vago R, Sanchez AM, Podini P, Zarovni N, Murdica V, et al. Secretome of in vitro cultured human embryos contains extracellular vesicles that are uptaken by the maternal side. Sci Rep. 2017;7(1):210. https://doi.org/10.1038/s41598-017-05549-w.

  19. Berkhout RP, Keijser R, Repping S, Lambalk CB, Afink GB, Mastenbroek S, et al. High-quality human preimplantation embryos stimulate endometrial stromal cell migration via secretion of microRNA hsa-miR-320a. Hum Reprod. 2020;35(8):1797–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vilella F, Moreno-Moya JM, Balaguer N, Grasso A, Herrero M, Martinez S, et al. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development. 2015;142(18):3210–21.

    Article  CAS  PubMed  Google Scholar 

  21. Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease. N Engl J Med. 2018;379(10):958–66.

    Article  CAS  PubMed  Google Scholar 

  22. Asgari S. RNA as a means of inter-species communication and manipulation: progresses and shortfalls. RNA Biol. 2017;14(4):389–90.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Griffiths-Jones S. miRBase: microRNA sequences and annotation. Curr Protoc Bioinformatics. 2010;Chapter 12:Unit 12.9.1–0.

    Google Scholar 

  24. Lv C, Yu WX, Wang Y, Yi DJ, Zeng MH, Xiao HM. MiR-21 in extracellular vesicles contributes to the growth of fertilized eggs and embryo development in mice. Biosci Rep. 2018;38(4):BSR20180036. https://doi.org/10.1042/BSR20180036.

  25. Hannan NJ, Paiva P, Dimitriadis E, Salamonsen LA. Models for study of human embryo implantation: choice of cell lines? Biol Reprod. 2010;82(2):235–45.

    Article  CAS  PubMed  Google Scholar 

  26. Cutting R, Morroll D, Roberts SA, Pickering S, Rutherford A, Bfs, et al. Elective single embryo transfer: guidelines for practice British Fertility Society and Association of Clinical Embryologists. Hum Fertil (Camb). 2008;11(3):131–46.

    Article  Google Scholar 

  27. Stephenson EL, Braude PR, Mason C. International community consensus standard for reporting derivation of human embryonic stem cell lines. Regen Med. 2007;2(4):349–62.

    Article  PubMed  Google Scholar 

  28. Lensen S, Venetis C, Ng EHY, Young SL, Vitagliano A, Macklon NS, et al. Should we stop offering endometrial scratching prior to in vitro fertilization? Fertil Steril. 2019;111(6):1094–101.

    Article  PubMed  Google Scholar 

  29. Barash A. Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertil Steril. 2003;79(6):1317–22.

    Article  PubMed  Google Scholar 

  30. Haraguchi H, Saito-Fujita T, Hirota Y, Egashira M, Matsumoto L, Matsuo M, et al. MicroRNA-200a locally attenuates progesterone signaling in the cervix, preventing embryo implantation. Mol Endocrinol. 2014;28(7):1108–17.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fukui Y, Hirota Y, Matsuo M, Gebril M, Akaeda S, Hiraoka T, et al. Uterine receptivity, embryo attachment, and embryo invasion: multistep processes in embryo implantation. Reprod Med Biol. 2019;18(3):234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Greening DW, Nguyen HP, Evans J, Simpson RJ, Salamonsen LA. Modulating the endometrial epithelial proteome and secretome in preparation for pregnancy: the role of ovarian steroid and pregnancy hormones. J Proteome. 2016;144:99–112.

    Article  CAS  Google Scholar 

  33. Greening DW, Nguyen HP, Elgass K, Simpson RJ, Salamonsen LA. Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions. Biol Reprod. 2016;94(2):38.

    Article  PubMed  Google Scholar 

  34. Liu C, Yao W, Yao J, Li L, Yang L, Zhang H, et al. Endometrial extracellular vesicles from women with recurrent implantation failure attenuate the growth and invasion of embryos. Fertil Steril. 2020;114(2):416–25.

    Article  CAS  PubMed  Google Scholar 

  35. Mo LJ, Song M, Huang QH, Guan H, Liu XD, Xie DF, et al. Exosome-packaged miR-1246 contributes to bystander DNA damage by targeting LIG4. Br J Cancer. 2018;119(4):492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Occhipinti G, Giulietti M, Principato G, Piva F. The choice of endogenous controls in exosomal microRNA assessments from biofluids. Tumour Biol. 2016;37(9):11657–65.

    Article  CAS  PubMed  Google Scholar 

  37. Burnett LA, Nowak RA. Exosomes mediate embryo and maternal interactions at implantation and during pregnancy. Front Biosci. 2016;8:79–96.

    Article  Google Scholar 

  38. Marin D, Scott RT Jr. Extracellular vesicles: a promising tool for assessment of embryonic competence. Curr Opin Obstet Gynecol. 2018;30(3):171–8.

    Article  PubMed  Google Scholar 

  39. Evans J, Rai A, Nguyen HPT, Poh QH, Elglass K, Simpson RJ, et al. In vitro human implantation model reveals a role for endometrial extracellular vesicles in embryo implantation: reprogramming the cellular and secreted proteome landscapes for bidirectional fetal-maternal communication. Proteomics. 2019:e1800423.

  40. Shi C, Shen H, Fan LJ, Guan J, Zheng XB, Chen X, et al. Endometrial microRNA signature during the window of implantation changed in patients with repeated implantation failure. Chin Med J. 2017;130(5):566–73.

    Article  CAS  PubMed  Google Scholar 

  41. Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA. 2017;8(4). https://doi.org/10.1002/wrna.1413.

  42. Ponsuksili S, Tesfaye D, Schellander K, Hoelker M, Hadlich F, Schwerin M, et al. Differential expression of miRNAs and their target mRNAs in endometria prior to maternal recognition of pregnancy associates with endometrial receptivity for in vivo- and in vitro-produced bovine embryos. Biol Reprod. 2014;91(6):135.

    Article  PubMed  Google Scholar 

  43. Choi Y, Kim HR, Lim EJ, Park M, Yoon JA, Kim YS, et al. Integrative analyses of uterine transcriptome and microRNAome reveal compromised LIF-STAT3 signaling and progesterone response in the endometrium of patients with recurrent/repeated implantation failure (RIF). PLoS One. 2016;11(6):e0157696.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Balaguer N, Moreno I, Herrero M, Gonzalez M, Simon C, Vilella F. Heterogeneous nuclear ribonucleoprotein C1 may control miR-30d levels in endometrial exosomes affecting early embryo implantation. Mol Hum Reprod. 2018;24(8):411–25.

    Article  CAS  PubMed  Google Scholar 

  46. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  47. Wu L, Zhang Y, Huang Z, Gu H, Zhou K, Yin X, et al. MiR-409-3p inhibits cell proliferation and invasion of osteosarcoma by targeting zinc-finger E-box-binding Homeobox-1. Front Pharmacol. 2019;10:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun S, Wang X, Xu X, Di H, Du J, Xu B, et al. MiR-433-3p suppresses cell growth and enhances chemosensitivity by targeting CREB in human glioma. Oncotarget. 2017;8(3):5057–68.

    Article  PubMed  Google Scholar 

  49. Ferretti C, Bruni L, Dangles-Marie V, Pecking AP, Bellet D. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum Reprod Update. 2006;13(2):121–41.

    Article  PubMed  Google Scholar 

  50. O'Neill C, Li Y, Jin XL. Survival signaling in the preimplantation embryo. Theriogenology. 2012;77(4):773–84.

    Article  CAS  PubMed  Google Scholar 

  51. Schatten H, Sun QY. Posttranslationally modified tubulins and other cytoskeletal proteins: their role in gametogenesis, oocyte maturation, fertilization and pre-implantation embryo development. Adv Exp Med Biol. 2014;759:57–87.

    Article  CAS  PubMed  Google Scholar 

  52. Saeed-Zidane M, Tesfaye D, Mohammed Shaker Y, Tholen E, Neuhoff C, Rings F, et al. Hyaluronic acid and epidermal growth factor improved the bovine embryo quality by regulating the DNA methylation and expression patterns of the focal adhesion pathway. PLoS One. 2019;14(10):e0223753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaneko Y, Lecce L, Day ML, Murphy CR. Focal adhesion kinase localizes to sites of cell-to-cell contact in vivo and increases apically in rat uterine luminal epithelium and the blastocyst at the time of implantation. J Morphol. 2012;273(6):639–50.

    Article  CAS  PubMed  Google Scholar 

  54. Zohni KM, Gat I, Librach C. Recurrent implantation failure: a comprehensive review. Minerva Ginecol. 2016;68(6):653–67.

    PubMed  Google Scholar 

  55. Alminana C, Bauersachs S. Extracellular vesicles: multi-signal messengers in the gametes/embryo-oviduct cross-talk. Theriogenology. 2020;150:59–69.

    Article  CAS  PubMed  Google Scholar 

  56. Rosenbluth EM, Shelton DN, Wells LM, Sparks AE, Van Voorhis BJ. Human embryos secrete microRNAs into culture media--a potential biomarker for implantation. Fertil Steril. 2014;101(5):1493–500.

    Article  CAS  PubMed  Google Scholar 

  57. Bidarimath M, Khalaj K, Kridli RT, Kan FW, Koti M, Tayade C. Extracellular vesicle mediated intercellular communication at the porcine maternal-fetal interface: a new paradigm for conceptus-endometrial cross-talk. Sci Rep. 2017;7:40476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bastu E, Demiral I, Gunel T, Ulgen E, Gumusoglu E, Hosseini MK, et al. Potential marker pathways in the endometrium that may cause recurrent implantation failure. Reprod Sci. 2019;26(7):879–90.

    Article  CAS  PubMed  Google Scholar 

  59. Macklon NS, Brosens JJ. The human endometrium as a sensor of embryo quality. Biol Reprod. 2014;91(4):98.

    Article  PubMed  Google Scholar 

  60. Martinez-Zamora MA, Tassies D, Reverter JC, Creus M, Casals G, Civico S, et al. Increased circulating cell-derived microparticle count is associated with recurrent implantation failure after IVF and embryo transfer. Reprod BioMed Online. 2016;33(2):168–73.

    Article  CAS  PubMed  Google Scholar 

  61. Kasvandik S, Saarma M, Kaart T, Rooda I, Velthut-Meikas A, Ehrenberg A, et al. Uterine fluid proteins for minimally invasive assessment of endometrial receptivity. J Clin Endocrinol Metab. 2020;105(1):dgz019. https://doi.org/10.1210/clinem/dgz019.

  62. Ullah K, Rahman TU, Pan HT, Guo MX, Dong XY, Liu J, et al. Serum estradiol levels in controlled ovarian stimulation directly affect the endometrium. J Mol Endocrinol. 2017;59(2):105–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (NSFC 81771582, NFSC 81901561, and NSFC 81701450).

Author information

Authors and Affiliations

Authors

Contributions

C.L. designed the experiments. C.L. collected the endometrial samples. C.L. and M.W. performed the experiments. C.L. wrote the manuscript, which was revised by H.Z. and C.S.

Corresponding authors

Correspondence to Hanwang Zhang or Cong Sui.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Ethics Approval

This study was approved by the Institutional Review Board of Tongji Hospital (TJ-IRB20190420).

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, M., Zhang, H. et al. Altered microRNA Profiles of Extracellular Vesicles Secreted by Endometrial Cells from Women with Recurrent Implantation Failure. Reprod. Sci. 28, 1945–1955 (2021). https://doi.org/10.1007/s43032-020-00440-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00440-y

Keywords

Navigation