Skip to main content
Log in

Assessment of Fetal Rhesus D and Gender with Cell-Free DNA and Exosomes from Maternal Blood

  • Fetus: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The detection of fetal cell-free DNA (cfDNA) from maternal plasma has enabled the development of essential techniques in prenatal diagnosis during recent years. Extracellular vesicles including exosomes were determined to carry fetal DNA fragments. Considering the known difficulties during isolation and stability of cfDNA, exosomes might provide a new opportunity for prenatal diagnosis and screening. In this study, comparison of cfDNA and exosome DNA (exoDNA) for predicting the fetal sex and Rhesus D (RHD) genotype was performed by using real-time polymerase chain reaction with simultaneous amplification of sequences of SRY and RHD genes. Fetal sex and RHD were determined in 100 and 81 RHD-negative pregnant women with cfDNA and exoDNA, respectively. The gestation ages of pregnant women were between 9 and 40 weeks. The results were compared with the neonatal phenotype for gender and a serological test for RHD. The cfDNA revealed 95.75% sensitivity and 100% specificity in RHD positivity and 100% sensitivity and 95.45% specificity in SRY positivity. Cohen’s agreement coefficient in the Kappa test ranged from 0.8 to 1.0 (P < 0.00001). Although the exoDNA failed to amplify 16 cases, the remaining 65 cases revealed a true estimate for both fetal RHD and SRY genes with 100% sensitivity and specificity. Successful application of exoDNA and cfDNA with real-time PCR for fetal genotyping enables this technique to be applied in the assessment of fetal RHD and gender during pregnancy, allowing initiation of early treatment methods and avoiding unnecessary interventions and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramezanzadeh M, Khosravi S, Salehi R. Cell-free fetal nucleic acid identifier markers in maternal circulation. Adv Biomed Res. 2017;6:89. https://doi.org/10.4103/2277-9175.211800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Monni G, Iuculano A. Re: ISUOG Practice Guidelines: invasive procedures for prenatal diagnosis. Ultrasound Obstet Gynecol. 2017;49:414–5. https://doi.org/10.1002/uog.17375.

    Article  CAS  PubMed  Google Scholar 

  3. Perlado-Marina S, Bustamante-Aragones A, Horcajada L, Trujillo-Tiebas M, Lorda-Sanchez I, Ruiz Ramos M, et al. Overview of five-years of experience performing non-invasive fetal sex assessment in maternal blood. Diagnostics. 2013;3:283–90. https://doi.org/10.3390/diagnostics3020283.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Skrzypek H, Hui L. Noninvasive prenatal testing for fetal aneuploidy and single gene disorders. Best Pract Res Clin Obstet Gynaecol. 2017;42:26–38. https://doi.org/10.1016/j.bpobgyn.2017.02.007.

    Article  PubMed  Google Scholar 

  5. Clausen FB, Damkjær MB, Dziegiel MH. Noninvasive fetal RhD genotyping. Transfus Apher Sci. 2014;50:154–62. https://doi.org/10.1016/j.transci.2014.02.008.

    Article  PubMed  Google Scholar 

  6. Choolani M, Mahyuddin AP, Hahn S. The promise of fetal cells in maternal blood. Best Pract Res Clin Obstet Gynaecol. 2012;26:655–67. https://doi.org/10.1016/j.bpobgyn.2012.06.008.

    Article  PubMed  Google Scholar 

  7. Keller S, Ridinger J, Rupp AK, Janssen JWG, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;9:86. https://doi.org/10.1186/1479-5876-9-86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G, Marine JC, et al. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 2008;15:1723–33. https://doi.org/10.1038/cdd.2008.104.

    Article  CAS  PubMed  Google Scholar 

  9. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2. https://doi.org/10.1038/ncomms1180.

  10. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126:1208–15. https://doi.org/10.1172/JCI81135.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kalluri R, Lebleu VS. Discovery of double-stranded genomic DNA in circulating exosomes. Cold Spring Harb Symp Quant Biol. 2016;81:275–80. https://doi.org/10.1101/sqb.2016.81.030932.

    Article  PubMed  Google Scholar 

  12. Repiská G, Konečná B, Shelke GV, Lässer C, Vlková BI, Minárik G. Is the DNA of placental origin packaged in exosomes isolated from plasma and serum of pregnant women? Clin Chem Lab Med. 2018;56:e150–3. https://doi.org/10.1515/cclm-2017-0560.

    Article  CAS  PubMed  Google Scholar 

  13. Fernando MR, Jiang C, Krzyzanowski GD, Ryan WL. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS One. 2017;12:e0183915. https://doi.org/10.1371/journal.pone.0183915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wong T. Hemolytic disease of the fetus and newborn. Brenner’s Encyclopedia of Genetics, Second Edition. https://doi.org/10.1016/B978-0-12-374984-0.00488-5.

  15. Yazer MH, Brunker PA, Bakdash S, Tobian AAR, Triulzi DJ, Earnest V, et al. Low incidence of D alloimmunization among patients with a serologic weak D phenotype after D+ transfusion. Transfusion. 2016;56:2502–9. https://doi.org/10.1111/trf.13725.

    Article  CAS  PubMed  Google Scholar 

  16. Fasano RM. Hemolytic disease of the fetus and newborn in the molecular era. Semin Fetal Neonatal Med. 2016;21:28–34. https://doi.org/10.1016/j.siny.2015.10.006.

    Article  PubMed  Google Scholar 

  17. Tiblad E, Taune Wikman A, Ajne G, Blanck A, Jansson Y, Karlsson A, et al. Targeted routine antenatal anti-D prophylaxis in the prevention of RhD immunisation - outcome of a new antenatal screening and prevention program. PLoS One. 2013;8:e70984. https://doi.org/10.1371/journal.pone.0070984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou L, Thorson JA, Nugent C, Davenport RD, Butch SH, Judd WJ. Noninvasive prenatal RHD genotyping by real-time polymerase chain reaction using plasma from D-negative pregnant women. Am J Obstet Gynecol. 2005;193:1966–71. https://doi.org/10.1016/j.ajog.2005.04.052.

    Article  CAS  PubMed  Google Scholar 

  19. Clausen FB, Barrett AN, Akkök CA, et al. Noninvasive fetal RHD genotyping to guide targeted anti-D prophylaxis–an external quality assessment workshop. Vox Sang. 2019;114:386–93. https://doi.org/10.1111/vox.12768.

    Article  CAS  PubMed  Google Scholar 

  20. Tynan JA, Angkachatchai V, Ehrich M, Paladino T, Van Den Boom D, Oeth P. Multiplexed analysis of circulating cell-free fetal nucleic acids for noninvasive prenatal diagnostic RHD testing. Am J Obstet Gynecol. 2011;204:251.e1–6. https://doi.org/10.1016/j.ajog.2010.09.028.

    Article  CAS  Google Scholar 

  21. D’Aversa E, Breveglieri G, Pellegatti P, Guerra G, Gambari R, Borgatti M. Non-invasive fetal sex diagnosis in plasma of early weeks pregnants using droplet digital PCR. Mol Med. 2018;24:14. https://doi.org/10.1186/s10020-018-0016-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parks M, Court S, Cleary S, Clokie S, Hewitt J, Williams D, et al. Non-invasive prenatal diagnosis of Duchenne and Becker muscular dystrophies by relative haplotype dosage. Prenat Diagn. 2016;36:312–20. https://doi.org/10.1002/pd.4781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Janovičová L, Konečná B, Vokálová L, Lauková L, Vlková B, Celec P. Sex, age, and bodyweight as determinants of extracellular DNA in the plasma of mice: a cross-sectional study. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20174163.

  24. Suck D. DNA recognition by DNase I. J Mol Recognit. 1994;7:65–70. https://doi.org/10.1002/jmr.300070203.

    Article  CAS  PubMed  Google Scholar 

  25. Khier S, Lohan L. Kinetics of circulating cell-free DNA for biomedical applications: critical appraisal of the literature. Futur Sci OA. 2018;4:FSO295. https://doi.org/10.4155/fsoa-2017-0140.

    Article  CAS  Google Scholar 

  26. Brinkman EK, Chen T, de Haas M, Holland HA, Akhtar W, van Steensel B. Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks. Mol Cell. 2018;70:801–813.e6. https://doi.org/10.1016/j.molcel.2018.04.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Macher HC, Noguerol P, Medrano-Campillo P, Garrido-Mírquez MR, Rubio-Calvo A, Carmona-González M, et al. Standardization non-invasive fetal RHD and SRY determination into clinical routine using a new multiplex RT-PCR assay for fetal cell-free DNA in pregnant women plasma: results in clinical benefits and cost saving. Clin Chim Acta. 2012;413:490–4. https://doi.org/10.1016/j.cca.2011.11.004.

    Article  CAS  PubMed  Google Scholar 

  28. S. K, D. P. Noninvasive fetal RhD genotyping by multiplex real-time PCR. Vox Sang. 2015;109:1–96. https://doi.org/10.1111/vox.12359.

    Article  Google Scholar 

  29. Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B: Biointerfaces. 2011;87:146–50. https://doi.org/10.1016/j.colsurfb.2011.05.013.

    Article  CAS  PubMed  Google Scholar 

  30. Tong M, Chen Q, James JL, Wise MR, Stone PR, Chamley LW. In vivo targets of human placental micro-vesicles vary with exposure time and pregnancy. Reproduction. 2017;153:835–45. https://doi.org/10.1530/REP-16-0615.

    Article  CAS  PubMed  Google Scholar 

  31. Konečná B, Tóthová Ľ, Repiská G. Exosomes-associated DNA—new marker in pregnancy complications? Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20122890.

  32. Pillay P, Maharaj N, Moodley J, Mackraj I. Placental exosomes and pre-eclampsia: maternal circulating levels in normal pregnancies and, early and late onset pre-eclamptic pregnancies. Placenta. 2016;46:18–25. https://doi.org/10.1016/j.placenta.2016.08.078.

    Article  CAS  PubMed  Google Scholar 

  33. Yang F, Liao X, Tian Y, Li G. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies. Biotechnol J. 2017;12. https://doi.org/10.1002/biot.201600699.

  34. Patel GK, Khan MA, Zubair H, Srivastava SK, Khushman M, Singh S, et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep. 2019;9:5335. https://doi.org/10.1038/s41598-019-41800-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang E, Batey A, Struble C, Musci T, Song K, Oliphant A. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. Prenat Diagn. 2013;33:662–6. https://doi.org/10.1002/pd.4119.

    Article  CAS  PubMed  Google Scholar 

  36. Mennuti MT, Cherry AM, Morrissette JJD, Dugoff L. Is it time to sound an alarm about false-positive cell-free DNA testing for fetal aneuploidy? Am J Obstet Gynecol. 2013;209:415–9. https://doi.org/10.1016/j.ajog.2013.03.027.

    Article  PubMed  Google Scholar 

  37. Brison N, Neofytou M, Dehaspe L, Bayindir B, van den Bogaert K, Dardour L, et al. Predicting fetoplacental chromosomal mosaicism during non-invasive prenatal testing. Prenat Diagn. 2018;38:258–66. https://doi.org/10.1002/pd.5223.

    Article  CAS  PubMed  Google Scholar 

  38. Rolnik DL, Yong Y, Lee TJ, Tse C, McLennan AC, Da Silva CF. Influence of body mass index on fetal fraction increase with gestation and cell-free DNA test failure. Obstet Gynecol. 2018;132:436–43. https://doi.org/10.1097/AOG.0000000000002752.

    Article  PubMed  Google Scholar 

  39. Haghiac M, Vora NL, Basu S, Johnson KL, Presley L, Bianchi DW, et al. Increased death of adipose cells, a path to release cell-free DNA into systemic circulation of obese women. Obesity. 2012;20:2213–9. https://doi.org/10.1038/oby.2012.138.

    Article  CAS  PubMed  Google Scholar 

  40. Qiao L, Zhang Q, Liang Y, Gao A, Ding Y, Zhao N, et al. Sequencing of short cfDNA fragments in NIPT improves fetal fraction with higher maternal BMI and early gestational age. Am J Transl Res. 2019;11(7):4450–4459.

  41. Altuntaş N, Taşçı Çelebi D, Koçak M, Andıran N. The screening of direct coombs test in newborns and the effect of its positivity on morbidity; a single center experience. Pam Med J. 2015;8:39–44. https://doi.org/10.5505/ptd.2015.37132.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Research Fund of Istanbul University (Project number: TYL-2018-29083).

Author information

Authors and Affiliations

Authors

Contributions

Concept: B.Y., S.S., M.S.; Supervision: S.S..; Materials: B.Y., O.S., S.S..; Data Collection and/or processing: B.Y., O.S., S.S..; Analysis and/or interpretation: B.Y., E.O., S.S..; Literature search: B.Y., O.S.; Writing: B.Y., S.S; Critical reviews: S.S., M.S.

Corresponding authors

Correspondence to Büşra Yaşa or Selçuk Sözer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(XLSX 24 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaşa, B., Şahin, O., Öcüt, E. et al. Assessment of Fetal Rhesus D and Gender with Cell-Free DNA and Exosomes from Maternal Blood. Reprod. Sci. 28, 562–569 (2021). https://doi.org/10.1007/s43032-020-00321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00321-4

Keywords

Navigation