Skip to main content
Log in

The Pre-Implantation Embryo Induces Uterine Inflammatory Reaction in Mice

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

It has been well established that uterine function during the peri-implantation period is precisely regulated by ovarian estrogen and progesterone. The embryo enters the uterine cavity before implantation. However, the impact of pre-implantation embryo on uterine function is largely unknown. In the present study, we performed RNA-seq analysis of mouse uterus on day 4 morning of natural pregnancy (with embryos in the uterus) and pseudo-pregnancy (without embryos in the uterus). We found that 146 genes were upregulated, and 77 genes were downregulated by the pre-implantation embryo. Gene ontology and gene network analysis highlighted the activation of inflammatory reaction in the uterus. By examining the promoter region of differentially expressed genes, we found that NF-kappaB was a causal transcription factor. Finally, we validated 4 inflammation-related genes by quantitative RT-PCR. These 4 genes are likely the main mediators of the inflammatory reaction in the uterus triggered by the pre-implantation embryo. Our data indicated that the pre-implantation embryo causes uterine inflammatory reaction, which in turn might contribute to the establishment of uterine receptivity and embryo implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7(3):185–99. https://doi.org/10.1038/nrg1808.

    Article  CAS  PubMed  Google Scholar 

  2. Wilcox LS, Peterson HB, Haseltine FP, Martin MC. Defining and interpreting pregnancy success rates for in vitro fertilization. Fertil Steril. 1993;60(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  3. Zinaman MJ, Clegg ED, Brown CC, O'Connor J, Selevan SG. Estimates of human fertility and pregnancy loss. Fertil Steril. 1996;65(3):503–9.

    Article  CAS  PubMed  Google Scholar 

  4. Macklon NS, Stouffer RL, Giudice LC, Fauser BC. The science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr Rev. 2006;27(2):170–207. https://doi.org/10.1210/er.2005-0015.

    Article  PubMed  Google Scholar 

  5. Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, et al. Physiological and molecular determinants of embryo implantation. Mol Asp Med. 2013;34(5):939–80. https://doi.org/10.1016/j.mam.2012.12.011.

    Article  CAS  Google Scholar 

  6. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359(6390):76–9. https://doi.org/10.1038/359076a0.

    Article  CAS  PubMed  Google Scholar 

  7. Bagot CN, Kliman HJ, Taylor HS. Maternal Hoxa10 is required for pinopod formation in the development of mouse uterine receptivity to embryo implantation. Dev Dyn. 2001;222(3):538–44. https://doi.org/10.1002/dvdy.1209.

    Article  CAS  PubMed  Google Scholar 

  8. Gendron RL, Paradis H, Hsieh-Li HM, Lee DW, Potter SS, Markoff E. Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hoxa-11 null mice. Biol Reprod. 1997;56(5):1097–105.

    Article  CAS  PubMed  Google Scholar 

  9. Daikoku T, Cha J, Sun X, Tranguch S, Xie H, Fujita T, et al. Conditional deletion of Msx homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity. Dev Cell. 2011;21(6):1014–25. https://doi.org/10.1016/j.devcel.2011.09.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee K, Jeong J, Kwak I, Yu CT, Lanske B, Soegiarto DW, et al. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet. 2006;38(10):1204–9. https://doi.org/10.1038/ng1874.

    Article  CAS  PubMed  Google Scholar 

  11. Liu JL, Zhao M, Peng Y, Fu YS. Identification of gene expression changes in rabbit uterus during embryo implantation. Genomics. 2016;107(5):216–21. https://doi.org/10.1016/j.ygeno.2016.03.005.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. https://doi.org/10.1038/nrg2484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8. https://doi.org/10.1038/nmeth.1226.

    Article  CAS  PubMed  Google Scholar 

  14. Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods. 2011;8(6):469–77. https://doi.org/10.1038/nmeth.1613.

    Article  CAS  PubMed  Google Scholar 

  15. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7:3. https://doi.org/10.1186/1471-2199-7-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang MY, Zhang WQ, Zhao M, Zhu C, He JP, Liu JL. Assessment of embryo-induced transcriptomic changes in hamster uterus using RNA-Seq. Cell Physiol Biochem. 2018;46(5):1868–78. https://doi.org/10.1159/000489371.

    Article  CAS  PubMed  Google Scholar 

  17. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11. https://doi.org/10.1093/bioinformatics/btp120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5. https://doi.org/10.1038/nbt.1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35(Web Server issue):W169–75. https://doi.org/10.1093/nar/gkm415.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362–d8. https://doi.org/10.1093/nar/gkw937.

    Article  CAS  PubMed  Google Scholar 

  21. Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics. 2008;24(2):282–4. https://doi.org/10.1093/bioinformatics/btm554.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao M, Zhang WQ, Liu JL. A study on regional differences in decidualization of the mouse uterus. Reproduction. 2017;153(5):645–53. https://doi.org/10.1530/REP-16-0486.

    Article  CAS  PubMed  Google Scholar 

  23. Koskinen P, Toronen P, Nokso-Koivisto J, Holm L. PANNZER: high-throughput functional annotation of uncharacterized proteins in an error-prone environment. Bioinformatics. 2015;31(10):1544–52. https://doi.org/10.1093/bioinformatics/btu851.

    Article  CAS  PubMed  Google Scholar 

  24. Yu G, Lu C, Wang J. NoGOA: predicting noisy GO annotations using evidences and sparse representation. BMC Bioinformatics. 2017;18(1):350. https://doi.org/10.1186/s12859-017-1764-z.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bromfield JJ. Seminal fluid and reproduction: much more than previously thought. J Assist Reprod Genet. 2014;31(6):627–36. https://doi.org/10.1007/s10815-014-0243-y.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Robertson SA, Mau VJ, Tremellen KP, Seamark RF. Role of high molecular weight seminal vesicle proteins in eliciting the uterine inflammatory response to semen in mice. J Reprod Fertil. 1996;107(2):265–77.

    Article  CAS  PubMed  Google Scholar 

  27. Robertson SA. Seminal fluid signaling in the female reproductive tract: lessons from rodents and pigs. J Anim Sci. 2007;85(13 Suppl):E36–44. https://doi.org/10.2527/jas.2006-578.

    Article  CAS  PubMed  Google Scholar 

  28. Austin CR. Fate of spermatozoa in the uterus of the mouse and rat. J Endocrinol. 1957;14(4):335–42.

    Article  CAS  PubMed  Google Scholar 

  29. Katila T. Post-mating inflammatory responses of the uterus. Reprod Domest Anim. 2012;47(Suppl 5):31–41. https://doi.org/10.1111/j.1439-0531.2012.02120.x.

    Article  PubMed  Google Scholar 

  30. Ma WG, Song H, Das SK, Paria BC, Dey SK. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci U S A. 2003;100(5):2963–8. https://doi.org/10.1073/pnas.0530162100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu JL, Zhang WQ, Zhao M, Huang MY. Integration of transcriptomic and metabolomic data reveals enhanced steroid hormone biosynthesis in mouse uterus during decidualization. Proteomics. 2017;17(19). https://doi.org/10.1002/pmic.201700059.

  32. He JP, Zhao M, Zhang WQ, Huang MY, Zhu C, Cheng HZ, et al. Identification of gene expression changes associated with uterine receptivity in mice. Front Physiol. 2019;10:125. https://doi.org/10.3389/fphys.2019.00125.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ristimaki A. Cyclooxygenase 2: from inflammation to carcinogenesis. Novartis Found Symp. 2004;256:215–21 discussion 21–6, 59–69.

    CAS  PubMed  Google Scholar 

  34. Chakraborty I, Das SK, Wang J, Dey SK. Developmental expression of the cyclo-oxygenase-1 and cyclo-oxygenase-2 genes in the peri-implantation mouse uterus and their differential regulation by the blastocyst and ovarian steroids. J Mol Endocrinol. 1996;16(2):107–22.

    Article  CAS  PubMed  Google Scholar 

  35. Lim H, Paria BC, Das SK, Dinchuk JE, Langenbach R, Trzaskos JM, et al. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell. 1997;91(2):197–208.

    Article  CAS  PubMed  Google Scholar 

  36. Wang H, Ma WG, Tejada L, Zhang H, Morrow JD, Das SK, et al. Rescue of female infertility from the loss of cyclooxygenase-2 by compensatory up-regulation of cyclooxygenase-1 is a function of genetic makeup. J Biol Chem. 2004;279(11):10649–58. https://doi.org/10.1074/jbc.M312203200.

    Article  CAS  PubMed  Google Scholar 

  37. Ramadas RA, Ewart SL, Iwakura Y, Medoff BD, LeVine AM. IL-36alpha exerts pro-inflammatory effects in the lungs of mice. PLoS One. 2012;7(9):e45784. https://doi.org/10.1371/journal.pone.0045784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Foster AM, Baliwag J, Chen CS, Guzman AM, Stoll SW, Gudjonsson JE, et al. IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J Immunol. 2014;192(12):6053–61. https://doi.org/10.4049/jimmunol.1301481.

    Article  CAS  PubMed  Google Scholar 

  39. Kuang H, Chen Q, Zhang Y, Zhang L, Peng H, Ning L, et al. The cytokine gene CXCL14 restricts human trophoblast cell invasion by suppressing gelatinase activity. Endocrinology. 2009;150(12):5596–605. https://doi.org/10.1210/en.2009-0570.

    Article  CAS  PubMed  Google Scholar 

  40. Kuang H, Chen Q, Fan X, Zhang Y, Zhang L, Peng H, et al. CXCL14 inhibits trophoblast outgrowth via a paracrine/autocrine manner during early pregnancy in mice. J Cell Physiol. 2009;221(2):448–57. https://doi.org/10.1002/jcp.21877.

    Article  CAS  PubMed  Google Scholar 

  41. Mokhtar NM, Cheng CW, Cook E, Bielby H, Smith SK, Charnock-Jones DS. Progestin regulates chemokine (C-X-C motif) ligand 14 transcript level in human endometrium. Mol Hum Reprod. 2010;16(3):170–7. https://doi.org/10.1093/molehr/gap100.

    Article  CAS  PubMed  Google Scholar 

  42. Schmitz JM, McCracken VJ, Dimmitt RA, Lorenz RG. Expression of CXCL15 (Lungkine) in murine gastrointestinal, urogenital, and endocrine organs. J Histochem Cytochem. 2007;55(5):515–24. https://doi.org/10.1369/jhc.6A7121.2007.

    Article  CAS  PubMed  Google Scholar 

  43. Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, et al. Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science. 2003;299(5605):405–8. https://doi.org/10.1126/science.1079546.

    Article  CAS  PubMed  Google Scholar 

  44. Griffith OW, Chavan AR, Protopapas S, Maziarz J, Romero R, Wagner GP. Embryo implantation evolved from an ancestral inflammatory attachment reaction. Proc Natl Acad Sci U S A. 2017;114(32):E6566–e75. https://doi.org/10.1073/pnas.1701129114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu JL. Implantation in eutherians: which came first, the inflammatory reaction or attachment? Proc Natl Acad Sci U S A. 2018;115(1):E1–e2. https://doi.org/10.1073/pnas.1716675115.

    Article  CAS  PubMed  Google Scholar 

  46. Griffith OW, Chavan AR, Protopapas S, Maziarz J, Romero R, Wagner GP. Reply to Liu: inflammation before implantation both in evolution and development. Proc Natl Acad Sci U S A. 2018;115(1):E3–e4. https://doi.org/10.1073/pnas.1717001115.

    Article  CAS  PubMed  Google Scholar 

  47. Dominguez F, Pellicer A, Simon C. The human embryo proteome. Reprod Sci. 2009;16(2):188–90. https://doi.org/10.1177/1933719108328612.

    Article  CAS  PubMed  Google Scholar 

  48. Gardner DK, Harvey AJ. Blastocyst metabolism. Reprod Fertil Dev. 2015;27(4):638–54. https://doi.org/10.1071/RD14421.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell. 2017;168(1–2):37–57. https://doi.org/10.1016/j.cell.2016.12.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo L, Li DH, Li XP, Zhang SC, Yan CF, Wu JF et al. Polymorphisms in the nuclear factor kappa B gene association with recurrent embryo implantation failure. Genet Mol Res. 2016;15(2). https://doi.org/10.4238/gmr.15027759.

  51. Nakamura H, Kimura T, Ogita K, Nakamura T, Takemura M, Shimoya K, et al. NF-kappaB activation at implantation window of the mouse uterus. Am J Reprod Immunol. 2004;51(1):16–21.

    Article  PubMed  Google Scholar 

  52. Sakowicz A. The role of NFkappaB in the three stages of pregnancy - implantation, maintenance, and labour: a review article. Bjog. 2018;125(11):1379–87. https://doi.org/10.1111/1471-0528.15172.

    Article  CAS  PubMed  Google Scholar 

  53. Nakamura H, Kimura T, Ogita K, Koyama S, Tsujie T, Tsutsui T, et al. Alteration of the timing of implantation by in vivo gene transfer: delay of implantation by suppression of nuclear factor kappaB activity and partial rescue by leukemia inhibitory factor. Biochem Biophys Res Commun. 2004;321(4):886–92. https://doi.org/10.1016/j.bbrc.2004.07.045.

    Article  CAS  PubMed  Google Scholar 

  54. Chun KS, Surh YJ. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol. 2004;68(6):1089–100. https://doi.org/10.1016/j.bcp.2004.05.031.

    Article  CAS  PubMed  Google Scholar 

  55. Poyser NL. A comparison of the effects of indomethacin and NS-398 (a selective prostaglandin H synthase-2 inhibitor) on implantation in the rat. Prostaglandins Leukot Essent Fat Acids. 1999;61(5):297–301. https://doi.org/10.1054/plef.1999.0103.

    Article  CAS  Google Scholar 

  56. Potdar N, Gelbaya T, Nardo LG. Endometrial injury to overcome recurrent embryo implantation failure: a systematic review and meta-analysis. Reprod BioMed Online. 2012;25(6):561–71. https://doi.org/10.1016/j.rbmo.2012.08.005.

    Article  PubMed  Google Scholar 

  57. El-Toukhy T, Sunkara S, Khalaf Y. Local endometrial injury and IVF outcome: a systematic review and meta-analysis. Reprod BioMed Online. 2012;25(4):345–54. https://doi.org/10.1016/j.rbmo.2012.06.012.

    Article  PubMed  Google Scholar 

  58. Lee KY, DeMayo FJ. Animal models of implantation. Reproduction. 2004;128(6):679–95. https://doi.org/10.1530/rep.1.00340.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by National Natural Science Foundation of China (31771665), Guangdong Special Support Program (2019BT02Y276), and Innovation Team Project of Guangdong University (2019KCXTD001). The funders have no role in study design, data collection, analysis or interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Long Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLS 61 kb)

ESM 2

(XLS 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Hu, W., Zhao, M. et al. The Pre-Implantation Embryo Induces Uterine Inflammatory Reaction in Mice. Reprod. Sci. 28, 60–68 (2021). https://doi.org/10.1007/s43032-020-00259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00259-7

Keywords

Navigation