Skip to main content
Log in

Association Between Functional Activity of Mitochondria and Actin Cytoskeleton Instability in Oocytes from Advanced Age Mice

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction is strongly associated with the oocyte quality and aging, wherein the aged oocytes are related to the actin cytoskeleton integrity; however, whether this integrity is associated with mitochondrial dysfunction in oocytes from aged mice remains unclear. In the present study, we investigated the relationship between mitochondrial dysfunction and actin cytoskeleton instability in oocytes from the aged mice. We performed comparable analysis of mitochondrial motility between young, 1.5 μM cytochalasin B (CB)-treated young oocytes, and aged oocytes by confocal live imaging. Moreover, we analyzed the relationships between mitochondrial motility and maturation ratios, including ATP production ratio of the young, CB-treated young, and aged oocytes. Actin cytoskeleton instability in the aged oocytes and CB-treated young oocytes led to a significant decrease in the mitochondrial motility and low ATP productive ratios compared to those in the young group. Our data suggest that the actin cytoskeleton instability is presumably the primary cause for the loss of mitochondrial function in the aged murine oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Theurey P, Pizzo P. The aging mitochondria. Genes (Basel). 2018;9.

  2. Eichenlaub-Ritter U. Oocyte ageing and its cellular basis. Int J Dev Biol. 2012;56:841–52.

    Article  CAS  Google Scholar 

  3. Hunt P. Oocyte biology: do the wheels fall off with age? Curr Biol. 2017;27:R266–9.

    Article  CAS  Google Scholar 

  4. Bentov Y, Esfandiari N, Burstein E, Casper RF. The use of mitochondrial nutrients to improve the outcome of infertility treatment in older patients. Fertil Steril. 2010;93:272–5.

    Article  CAS  Google Scholar 

  5. Miao YL, Kikuchi K, Sun QY, Schatten H. Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update. 2009;15:573–85.

    Article  Google Scholar 

  6. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94:909–50.

    Article  CAS  Google Scholar 

  7. Payne BA, Chinnery PF. Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim Biophys Acta. 1847;2015:1347–53.

    Google Scholar 

  8. Chen H, Chan DC. Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet. 2009;18:R169–76.

    Article  CAS  Google Scholar 

  9. Otera H, Mihara K. Molecular mechanisms and physiologic functions of mitochondrial dynamics. J Biochem. 2011;149:241–51.

    Article  CAS  Google Scholar 

  10. Korten T, Månsson A, Diez S. Towards the application of cytoskeletal motor proteins in molecular detection and diagnostic devices. Curr Opin Biotechnol. 2010;21(4):477–88.

    Article  CAS  Google Scholar 

  11. Xiao Q, Hu X, Wei Z, Tam KY. Cytoskeleton molecular motors: structures and their functions in neuron. Int J Biol Sci. 2016;12(9):1083–92.

    Article  CAS  Google Scholar 

  12. Lawrence EJ, Boucher E, Mandato CA. Mitochondria-cytoskeleton associations in mammalian cytokinesis. Cell Div. 2016;11:3.

    Article  CAS  Google Scholar 

  13. Bezanilla M, Gladfelter AS, Kovar DR, Lee WL. Cytoskeletal dynamics: a view from the membrane. J Cell Biol. 2015;209(3):329–37.

    Article  CAS  Google Scholar 

  14. Disanza A, Scita G. Cytoskeletal regulation: coordinating actin and microtubule dynamics in membrane trafficking. Curr Biol. 2008;18(18):R873–5.

    Article  CAS  Google Scholar 

  15. Holmes KC, Popp D, Gebhard W, Kabsch W. Atomic model of the actin filament. Nature. 1990;347(6288):44–9.

    Article  CAS  Google Scholar 

  16. Boldogh IR, Pon LA. Interactions of mitochondria with the actin cytoskeleton. Biochim Biophys Acta. 2006;1763:450–62.

  17. Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR. A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol. 2004;164:803–9.

    Article  CAS  Google Scholar 

  18. Moore AS, Holzbaur ELF. Mitochondrial-cytoskeletal interactions: dynamic associations that facilitate network function and remodeling. Curr Opin Physiol. 2018;3:94–100.

    Article  Google Scholar 

  19. Cartelli D, Amadeo A, Calogero AM, Casagrande FVM, De Gregorio C, Gioria M, et al. Parkin absence accelerates microtubule aging in dopaminergic neurons. Neurobiol Aging. 2018;61:66–74.

    Article  CAS  Google Scholar 

  20. Dutta S, Sengupta P. Men and mice: relating their ages. Life Sci. 2016;152:244–8.

    Article  CAS  Google Scholar 

  21. Ayala-Torres S, Chen Y, Svoboda T, Rosenblatt J, Van Houten B. Analysis of gene-specific DNA damage and repair using quantitative polymerase chain reaction. Methods. 2000;22(2):135–47.

    Article  CAS  Google Scholar 

  22. Bros H, Hauser A, Paul F, Niesner R, Infante-Duarte C. Assessing mitochondrial movement within neurons: manual versus automated tracking methods. Traffic. 2015;16:906–17.

    Article  CAS  Google Scholar 

  23. Cohen AA. Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology. 2016;17:205–20.

    Article  CAS  Google Scholar 

  24. Bertaud J, Qin Z, Buehler MJ. Intermediate filament-deficient cells are mechanically softer at large deformation: a multi-scale simulation study. Acta Biomater. 2010;6(7):2457–66.

  25. Lee YJ, Keng PC. Studying the effects of actin cytoskeletal destabilization on cell cycle by cofilin overexpression. Mol Biotechnol. 2005;31(1):1–10.

    Article  CAS  Google Scholar 

  26. Yang GN, Kopecki Z, Cowin AJ. Role of actin cytoskeleton in the regulation of epithelial cutaneous stem cells. Stem Cells Dev. 2016;25(10):749–59.

  27. Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res. 2017;18(1):54.

    Article  Google Scholar 

  28. Gourlay CW, Ayscough KR. The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol. 2005;6(7):583–9.

    Article  CAS  Google Scholar 

  29. Wassarman PM, Josefowicz WJ, Letourneau GE. Meiotic maturation of mouse oocytes in vitro: inhibition of maturation at specific stages of nuclear progression. J Cell Sci. 1976 Dec;22(3):531–45.

    CAS  PubMed  Google Scholar 

  30. Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest. 2013;123:951–7.

    Article  CAS  Google Scholar 

  31. Choi KH, Hong SH, Lee HR, Lee HT, Lee JH, Lee SJ. Neogenin regulates mitochondrial activity in pre-implantation mouse embryos. Biochem Biophys Res Commun. 2017;482:1060–6.

    Article  CAS  Google Scholar 

  32. Coticchio G, Guglielmo MC, Albertini DF, Dal Canto M, Mignini Renzini M, De Ponti E, et al. Contributions of the actin cytoskeleton to the emergence of polarity during maturation in human oocytes. Mol Hum Reprod. 2014;20:200–7.

    Article  CAS  Google Scholar 

  33. Chian R-C, Li H. Mitochondrial dysfunction and age-related oocyte quality. Reprod Develop Med. 2017;1:45.

    Article  Google Scholar 

  34. MacLennan M, Crichton JH, Playfoot CJ, Adams IR. Oocyte development, meiosis and aneuploidy. Semin Cell Dev Biol. 2015;45:68–76.

    Article  CAS  Google Scholar 

  35. Djahanbakhch O, Ezzati M, Zosmer A. Reproductive ageing in women. J Pathol. 2007;211:219–31.

    Article  CAS  Google Scholar 

  36. Chappel S. The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Int. 2013;2013:183024.

    Article  Google Scholar 

  37. Bentov Y, Casper RF. The aging oocyte--can mitochondrial function be improved? Fertil Steril. 2013;99:18–22.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) [grant numbers 2018R1D1A1B07050138, 2018R1C1B5045516, 2018R1D1A1B07044016 and 2019R1A2C1086882].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Hyang Kim or Jae Ho Lee.

Ethics declarations

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(ZIP 205642 kb)

ESM 2

Graph of mitochondrial location ratios in the nuclear and cytoplasm (cyto) area in the ooplasm of young and aged oocytes from the GVBD to MII phase (cytoplasm and near nuclear area) (JPG 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.J., Choi, K.H., Seo, D.W. et al. Association Between Functional Activity of Mitochondria and Actin Cytoskeleton Instability in Oocytes from Advanced Age Mice. Reprod. Sci. 27, 1037–1046 (2020). https://doi.org/10.1007/s43032-020-00145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00145-2

Keywords

Navigation