Skip to main content

Advertisement

Log in

Trisomy 21 is Associated with Caspase-2 Upregulation in Cytotrophoblasts at the Maternal-Fetal Interface

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Impaired placentation is implicated in poor perinatal outcomes associated with Trisomy 21. Earlier studies revealed abnormal cytotrophoblast differentiation along the invasive pathway as a contributing mechanism. To further elucidate the causes, we evaluated Caspase-2 expression at the protein level (immunolocalization and immunoblot) in samples from Trisomy 21 (n = 9) and euploid (n = 4) age-matched placentas. Apoptosis was investigated via the TUNEL assay. An immunolocalization approach was used to characterize Caspase-3, Fas (CD95), and Fas ligand in the same samples. Caspase-2 was significantly overexpressed in Trisomy 21 placentas, with the highest expression in villous cores and invasive cytotrophoblasts. Immunolocalization showed that Caspase-3 had a similar expression pattern as Caspase-2. Using the TUNEL approach, we observed high variability in the number of apoptotic cells in biopsies from different regions of the same placenta and among different placentas. However, Trisomy 21 placentas had more apoptotic cells, specifically in cell columns and basal plates. Furthermore, Caspase-2 co-immunolocalized with Fas (CD95) and FasL in TUNEL-positive extravillous cytotrophoblasts, but not in villous cores. These results help explain the higher levels of apoptosis among placental cells of Trisomy 21 pregnancies in molecular terms. Specifically, the co-expression of Caspase-2 and Caspase-3 with other regulators of the apoptotic process in TUNEL-positive cells suggests these molecules may cooperate in launching the observed apoptosis. Among trophoblasts, only the invasive subpopulation showed this pattern, which could help explain the higher rates of adverse outcomes in these pregnancies. In future experiments, this relationship will be further examined at a functional level in cultured human trophoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Birth Defects: Data & Statistics in the United States. 2014. http://www.cdc.gov/NCBDDD/birthdefects/data.html.

  2. Aït Yahya-Graison E, Aubert J, Dauphinot L, Rivals I, Prieur M, Golfier G, et al. Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am J Hum Genet. 2007;81(3):475–91.

    PubMed  PubMed Central  Google Scholar 

  3. Briggs JA, Mason EA, Ovchinnikov DA, Wells CA, Wolvetang EJ. Concise review: new paradigms for Down syndrome research using induced pluripotent stem cells: tackling complex human genetic disease. Stem Cells Transl Med. 2013;2(3):175–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Roper RJ, Reeves RH. Understanding the basis for Down syndrome phenotypes. PLoS Genet. 2006;2(3):e50.

    PubMed  PubMed Central  Google Scholar 

  5. Yang Q, Rasmussen SA, Friedman JM. Mortality associated with Down's syndrome in the USA from 1983 to 1997: a population-based study. Lancet. 2002;359(9311):1019–25.

    PubMed  Google Scholar 

  6. Bianco K, Caughey AB, Shaffer BL, Davis R, Norton ME. History of miscarriage and increased incidence of fetal aneuploidy in subsequent pregnancy. Obstet Gynecol. 2006;107(5):1098–102.

    PubMed  Google Scholar 

  7. Breed AS, Mantingh A, Vosters R, Beekhuis JR, Van Lith JM, Anders GJ. Follow-up and pregnancy outcome after a diagnosis of mosaicism in CVS. Prenat Diagn. 1991;11(8):577–80.

    CAS  PubMed  Google Scholar 

  8. Wapner RJ. Genetics of stillbirth. Clin Obstet Gynecol. 2010;53(3):628–34.

    PubMed  Google Scholar 

  9. Bogart MH, Pandian MR, Jones OW. Abnormal maternal serum chorionic gonadotropin levels in pregnancies with fetal chromosome abnormalities. Prenat Diagn. 1987;7(9):623–30.

    CAS  PubMed  Google Scholar 

  10. Wald NJ, Watt HC, Hackshaw AK. Integrated screening for Down's syndrome on the basis of tests performed during the first and second trimesters. N Engl J Med. 1999;341(7):461–7.

    CAS  PubMed  Google Scholar 

  11. Pidoux G, Gerbaud P, Cocquebert M, et al. Review: Human trophoblast fusion and differentiation: lessons from trisomy 21 placenta. Placenta. 2012;33(Suppl):S81–6.

    PubMed  Google Scholar 

  12. Pidoux G, Gerbaud P, Marpeau O, Guibourdenche J, Ferreira F, Badet J, et al. Human placental development is impaired by abnormal human chorionic gonadotropin signaling in trisomy 21 pregnancies. Endocrinology. 2007;148(11):5403–13.

    CAS  PubMed  Google Scholar 

  13. Roberts L, Sebire NJ, Fowler D, Nicolaides KH. Histomorphological features of chorionic villi at 10-14 weeks of gestation in trisomic and chromosomally normal pregnancies. Placenta. 2000;21(7):678–83.

    CAS  PubMed  Google Scholar 

  14. Qureshi F, Jacques SM, Johnson MP, Hume RF Jr, Kramer RL, Yaron Y, et al. Trisomy 21 placentas: histopathological and immunohistochemical findings using proliferating cell nuclear antigen. Fetal Diagn Ther. 1997;12(4):210–5.

    CAS  PubMed  Google Scholar 

  15. Wright A, Zhou Y, Weier JF, et al. Trisomy 21 is associated with variable defects in cytotrophoblast differentiation along the invasive pathway. Am J Med Genet A. 2004;130(4):354–64.

    Google Scholar 

  16. Bianco K, Gormley M, Farrell J, Zhou Y, Oliverio O, Tilden H, et al. Placental transcriptomes in the common aneuploidies reveal critical regions on the trisomic chromosomes and genome-wide effects. Prenat Diagn. 2016;36(9):812–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Heazell AE, Crocker IP. Live and let die - regulation of villous trophoblast apoptosis in normal and abnormal pregnancies. Placenta. 2008;29(9):772–83.

    CAS  PubMed  Google Scholar 

  18. Huppertz B, Frank HG, Reister F, Kingdom J, Korr H, Kaufmann P. Apoptosis cascade progresses during turnover of human trophoblast: analysis of villous cytotrophoblast and syncytial fragments in vitro. Lab Invest. 1999;79(12):1687–702.

    CAS  PubMed  Google Scholar 

  19. Straszewski-Chavez SL, Abrahams VM, Mor G. The role of apoptosis in the regulation of trophoblast survival and differentiation during pregnancy. Endocr Rev. 2005;26(7):877–97.

    CAS  PubMed  Google Scholar 

  20. Heazell AE, Lacey HA, Jones CJ, Huppertz B, Baker PN, Crocker IP. Effects of oxygen on cell turnover and expression of regulators of apoptosis in human placental trophoblast. Placenta. 2008;29(2):175–86.

    CAS  PubMed  Google Scholar 

  21. Klugman SD, Gross SJ, Liang J, Livne K, Gross B, Khabele D, et al. Expression of keratin 8 and TNF-related apoptosis-I inducing ligand (TRAIL) in Down syndrome placentas. Placenta. 2008;29(4):382–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Langbein M, Strick R, Strissel PL, Vogt N, Parsch H, Beckmann MW, et al. Impaired cytotrophoblast cell-cell fusion is associated with reduced syncytin and increased apoptosis in patients with placental dysfunction. Mol Reprod Dev. 2008;75(1):175–83.

    PubMed  Google Scholar 

  23. Tamiolakis D, Papadopoulos N, Manavis J, Alexiadis G, Karamanidis D, Kotini A, et al. Differential expression of Bcl-2 proto-oncogene in the trophoblast from embryos with Down's syndrome and those after spontaneous abortion. Clin Exp Obstet Gynecol. 2001;28(3):163–7.

    CAS  PubMed  Google Scholar 

  24. Wright A, Zhou Y, Weier JF, Caceres E, Kapidzic M, Tabata T, et al. Trisomy 21 is associated with variable defects in cytotrophoblast differentiation along the invasive pathway. Am J Med Genet A. 2004;130A(4):354–64.

    PubMed  Google Scholar 

  25. Smith SC, Baker PN, Symonds EM. Increased placental apoptosis in intrauterine growth restriction. Am J Obstet Gynecol. 1997;177(6):1395–401.

    CAS  PubMed  Google Scholar 

  26. Tomas S, Prusac IK, Roje D, Tadin I. Trophoblast apoptosis in placentas from pregnancies complicated by preeclampsia. Gynecol Obstet Investig. 2011;71(4):250–5.

    CAS  Google Scholar 

  27. Tanir HM, Sener T, Artan S, Kaytaz B, Sahin-Mutlu F, Ozen ME. Programmed cell death (apoptosis) in placentas from normal pregnancy and pregnancy complicated by term (t) and preterm (p) premature rupture of membranes (PROM). Arch Gynecol Obstet. 2005;273(2):98–103.

    PubMed  Google Scholar 

  28. Sharp AN, Heazell AE, Crocker IP, Mor G. Placental apoptosis in health and disease. Am J Reprod Immunol. 2010;64(3):159–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dorstyn L, Puccini J, Wilson CH, Shalini S, Nicola M, Moore S, et al. Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability. Cell Death Differ. 2012;19(8):1288–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Han C, Zhao R, Kroger J, Qu M, Wani AA, Wang QE. Caspase-2 short isoform interacts with membrane-associated cytoskeleton proteins to inhibit apoptosis. PLoS One. 2013;8(7):e67033.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumar S. Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more? Nat Rev Cancer. 2009;9(12):897–903.

    CAS  PubMed  Google Scholar 

  32. Shalini S, Dorstyn L, Wilson C, Puccini J, Ho L, Kumar S. Impaired antioxidant defence and accumulation of oxidative stress in caspase-2-deficient mice. Cell Death Differ. 2012;19(8):1370–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou Y, Damsky CH, Chiu K, Roberts JM, Fisher SJ. Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts. J Clin Invest. 1993;91(3):950–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Y, Bianco K, Huang L, Nien JK, McMaster M, Romero R, et al. Comparative analysis of maternal-fetal interface in preeclampsia and preterm labor. Cell Tissue Res. 2007;329(3):559–69.

    PubMed  Google Scholar 

  35. Damsky CH, Fitzgerald ML, Fisher SJ. Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J Clin Invest. 1992;89(1):210–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou Y, McMaster M, Woo K, Janatpour M, Perry J, Karpanen T, et al. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol. 2002;160(4):1405–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bianco K, Gormley M, Tilden H, McMaster M, Fisher S. Genomic profiles in common aneuploidies: a combination of dose effect and whole genome misregulation. In. Vol 208, Issue 1, Supplement. American Journal of Obstetrics and Gynecology 2013:S30.

  38. Bataller M, Méndez C, Salas JA, Portugal J. Cellular response and activation of apoptosis by mithramycin SK in p21(WAF1)-deficient HCT116 human colon carcinoma cells. Cancer Lett. 2010;292(1):80–90.

    CAS  PubMed  Google Scholar 

  39. Ho LH, Read SH, Dorstyn L, Lambrusco L, Kumar S. Caspase-2 is required for cell death induced by cytoskeletal disruption. Oncogene. 2008;27(24):3393–404.

    CAS  PubMed  Google Scholar 

  40. Jean YY, Ribe EM, Pero ME, et al. Caspase-2 is essential for c-Jun transcriptional activation and Bim induction in neuron death. Biochem J. 2013;455(1):15–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Vakifahmetoglu-Norberg H, Norberg E, Perdomo AB, et al. Caspase-2 promotes cytoskeleton protein degradation during apoptotic cell death. Cell Death Dis. 2013;4:e940.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ceruti S, Beltrami E, Matarrese P, Mazzola A, Cattabeni F, Malorni W, et al. A key role for caspase-2 and caspase-3 in the apoptosis induced by 2-chloro-2′-deoxy-adenosine (cladribine) and 2-chloro-adenosine in human astrocytoma cells. Mol Pharmacol. 2003;63(6):1437–47.

    CAS  PubMed  Google Scholar 

  43. Estrov Z, Thall PF, Talpaz M, Estey EH, Kantarjian HM, Andreeff M, et al. Caspase 2 and caspase 3 protein levels as predictors of survival in acute myelogenous leukemia. Blood. 1998;92(9):3090–7.

    CAS  PubMed  Google Scholar 

  44. Bamberger AM, Schulte HM, Thuneke I, Erdmann I, Bamberger CM, ASA SL. Expression of the apoptosis-inducing Fas ligand (FasL) in human first and third trimester placenta and choriocarcinoma cells. J Clin Endocrinol Metab. 1997;82(9):3173–5.

    CAS  PubMed  Google Scholar 

  45. Nagata S. Fas and Fas ligand: a death factor and its receptor. Adv Immunol. 1994;57:129–44.

    CAS  PubMed  Google Scholar 

  46. Robinson WP, Peñaherrera MS, Jiang R, et al. Assessing the role of placental trisomy in preeclampsia and intrauterine growth restriction. Prenat Diagn. 2010;30(1):1–8.

    PubMed  Google Scholar 

  47. Winn VD, Gormley M, Paquet AC, et al. Severe preeclampsia-related changes in gene expression at the maternal-fetal interface include sialic acid-binding immunoglobulin-like lectin-6 and pappalysin-2. Endocrinology. 2008;150(1):452–62.

    PubMed  PubMed Central  Google Scholar 

  48. Hannibal RL, Cardoso-Moreira M, Chetty SP, Lau J, Qi Z, Gonzalez-Maldonado E, et al. Investigating human placentation and pregnancy using first trimester chorionic villi. Placenta. 2018;65:65–75.

    CAS  PubMed  Google Scholar 

  49. Fisher SJ, Cui TY, Zhang L, Hartman L, Grahl K, Zhang GY, et al. Adhesive and degradative properties of human placental cytotrophoblast cells in vitro. J Cell Biol. 1989;109(2):891–902.

    CAS  PubMed  Google Scholar 

  50. Damsky CH, Fisher SJ. Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors. Curr Opin Cell Biol. 1998;10(5):660–6.

    CAS  PubMed  Google Scholar 

  51. Damsky CH, Librach C, Lim KH, Fitzgerald ML, McMaster M, Janatpour M, et al. Integrin switching regulates normal trophoblast invasion. Development. 1994;120(12):3657–66.

    CAS  PubMed  Google Scholar 

  52. Librach CL, Werb Z, Fitzgerald ML, Chiu K, Corwin NM, Esteves RA, et al. 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J Cell Biol. 1991;113(2):437–49.

    CAS  PubMed  Google Scholar 

  53. Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004;114(6):744–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Genbacev O, Donne M, Kapidzic M, et al. Establishment of human trophoblast progenitor cell lines from the chorion. Stem Cells. 2011;29(9):1427–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Genbacev O, Lamb JD, Prakobphol A, Donne M, McMaster MT, Fisher SJ. Human trophoblast progenitors: where do they reside? Semin Reprod Med. 2013;31(1):56–61.

    PubMed  PubMed Central  Google Scholar 

  56. Jesenberger V, Procyk KJ, Yuan J, Reipert S, Baccarini M. Salmonella-induced caspase-2 activation in macrophages: a novel mechanism in pathogen-mediated apoptosis. J Exp Med. 2000;192(7):1035–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmelz K, Wieder T, Tamm I, Müller A, Essmann F, Geilen CC, et al. Tumor necrosis factor alpha sensitizes malignant cells to chemotherapeutic drugs via the mitochondrial apoptosis pathway independently of caspase-8 and NF-kappaB. Oncogene. 2004;23(40):6743–59.

    CAS  PubMed  Google Scholar 

  58. Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2014.

  59. Zhivotovsky B, Orrenius S. Caspase-2 function in response to DNA damage. Biochem Biophys Res Commun. 2005;331(3):859–67.

    CAS  PubMed  Google Scholar 

  60. Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 2003;10(1):26–35.

    CAS  PubMed  Google Scholar 

  61. Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME. Apoptosis signaling by death receptors. Eur J Biochem. 1998;254(3):439–59.

    CAS  PubMed  Google Scholar 

  62. Banzato PC, Daher S, Traina E, Torloni MR, Gueuvoghlanian-Silva BY, Puccini RF, et al. FAS and FAS-L genotype and expression in patients with recurrent pregnancy loss. Reprod Sci. 2013;20(9):1111–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi HK, Choi BC, Lee SH, Kim JW, Cha KY, Baek KH. Expression of angiogenesis- and apoptosis-related genes in chorionic villi derived from recurrent pregnancy loss patients. Mol Reprod Dev. 2003;66(1):24–31.

    CAS  PubMed  Google Scholar 

  64. Kaponis A, Skyrlas A, Zagorianakou N, et al. Coelomic cells show apoptosis via Fas/FasL system: a comparative study between healthy human pregnancies and missed miscarriages. Hum Reprod. 2008;23(5):1159–69.

    CAS  PubMed  Google Scholar 

  65. Aschkenazi S, Straszewski S, Verwer KM, Foellmer H, Rutherford T, Mor G. Differential regulation and function of the Fas/Fas ligand system in human trophoblast cells. Biol Reprod. 2002;66(6):1853–61.

    CAS  PubMed  Google Scholar 

  66. Olsson M, Vakifahmetoglu H, Abruzzo PM, Högstrand K, Grandien A, Zhivotovsky B. DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis. Oncogene. 2009;28(18):1949–59.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Jason Farrell for assistance with tissue collection. We are also grateful to members of the Fisher Lab for helpful discussion, to Drs. Tippi MacKenzie and Anna Bakardjiev for reviewing a draft of this paper and Elizabeth Seckel for copy editing.

Funding

Funding provided by the Clinical and Translational Research Program at the University of California, San Francisco, supported in part by the PROF-PATH Program, which is funded by the National Institute on Minority Health and Health Disparities (NIMHD) Award R25MD006832. Dr. Katherine Bianco was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/National Institute of Health (NIH) Clinical Investigator Award K08HD069518-01. Placental tissue collection supported in part by Eunice Kennedy Shriver NICHD/NIH through a cooperative agreement P50 HD055764, as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research.

This content is solely the responsibility of the authors and does not necessarily represent the official views of NIMHD, NICHD or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Bianco.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest. Susan J. Fisher was a consultant for Verinata Health, Inc an Illumina Company. Katherine Bianco was a consultant for SeraCare Life Science Inc.

Electronic supplementary material

Supplemental Table 1

(DOCX 12 kb).

Supplemental Fig. 1.

CASP2 colocalizes with markers of apoptosis in CTBs in the cell columns and basal plate, but not in the villous core. Placental biopsies from the MFI were probed with antibodies for additional markers of apoptosis – Fas (CD95) and Fas Ligand (FasL) (A–P). Similar to TUNEL assay findings (Fig. 3), Fas (CD95) expression was greatest in invasive CTBs in the basal plate, as seen by co-localization of cytokeratin 7 and Fas (CD95) (A–H). Fas (CD95) and FasL co-localization was also limited to the basal plate (I–P). This suggests that apoptosis is greatest at the MFI. Arrows indicate direction of CTB invasion. Abbreviations: vc villous core, bp basal plate, fv floating villi. Scale bar = 100 μm (JPG 793 kb).

Supplemental Fig. 2

CASP2 expression in an euploid placenta as compared to a T21 placenta. CASP2 expression is minimal in the euploidy invasive pathway. In the case of T21, CASP2 expression is upregulated in the villous core towards the basal plate. Arrows indicate direction of CTB invasion. Abbreviations: vc villous core, bp basal plate, Scale bar = 100 μm (JPG 433 kb).

Supplemental Fig. 3

Hematoxylin and eosin (H&E) staining sections of euploid placentas as compared to T21 placentas. Panels A–D are euploid placentas at 15 and 20 weeks. Panels E through H are placentas affected with T21 at 17 and 22 weeks. Magnification at 10× and 20× (JPG 748 kb).

Supplemental Fig. 4

Overexpression of CASP2 was observed in T21 placentas. Five T21 placentas are presented between 13.3 and 22.5 weeks’ gestation. Degree of DAPI staining in blue, cytokeratin 7 in red, and CASP2 in green. Abbreviations: vc villous core, bp basal plate, fv floating villi (JPG 524 kb).

ESM 1

(XLSX 28 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leon-Martinez, D., Robinson, J.F., Zdravkovic, T. et al. Trisomy 21 is Associated with Caspase-2 Upregulation in Cytotrophoblasts at the Maternal-Fetal Interface. Reprod. Sci. 27, 100–109 (2020). https://doi.org/10.1007/s43032-019-00002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-019-00002-x

Keywords

Navigation