Skip to main content
Log in

Effect of gradual increase and decrease in temperature on innate, cellular and humoral immunity in striped hamsters

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Environmental temperature can affect immune responses in animals. In order to understand the effect of gradual increase or decrease of temperature on immune function, adult female striped hamsters (Cricetulus barabensis) were randomly assigned into the 3 °C (n = 12), 23 °C (n = 12) and 32 °C (n = 12) groups. Body mass did not differ among the three groups during the course of the experiment. With the decrease of temperature, gross energy intake (GEI) increased, but total body fat mass decreased, indicating hamsters not only elevated GEI but also mobilized energy storage to satisfy the increased energy demand under cold conditions. Compared with the 23 °C group, low temperature suppressed innate immunity reflected by bacteria killing capacity, but did not affect thymus, spleen, white blood cells (WBC), cellular immunity indicated by phytohaemagglutinin (PHA) responses, the levels of immunoglobin (Ig) G and IgM, cytokines (i.e., IL-4, TNF-α and IFN-γ) and all the hematological parameters detected. IL-2 titres augmented with the decline of temperature. Compared to the 23 °C group, IgM 10 was lower but PHA 12 h and PLT were higher in the 32 °C group, indicating high temperature reduced humoral immunity, but enhanced cellular immunity and coagulation ability. However, high temperature had no effect on other immunological parameters including thymus, spleen, WBC, IgG, cytokines (i.e., IL-4, TNF-α and IFN-γ) and all the hematological indices except PLT. Corticosterone level was unaffected by high or low temperature. No correlations were found between body fat mass, corticosterone and most immune parameters, implying they were not the reason of changes in immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasests generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Adels LE, Leon M, Wiener SG, Smith MS (1986) Endocrine response to acute cold exposure by lactating and non-lactating norway rats. Physiol Behav 36:179–181

    Article  CAS  PubMed  Google Scholar 

  • Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrinol Metab 11:327–332

    Article  CAS  PubMed  Google Scholar 

  • Babamale OA, Abdulkareem AO, Opeyemi OA, Ugbomoiko US (2017) Alterations in T-helper cell type 1 and blood cell parameters in malaria-infected patients. Egypt J Basic Appl Sci 4:185–189

    Google Scholar 

  • Belay T, Woart A (2013) Cold-induced stress increases the intensity of Chlamydia genital infection in mice. J Microbiol Immunol Infect 46:330–337

    Article  CAS  PubMed  Google Scholar 

  • Bellocq JG, Krasnov BR, Khokhlova IS, Pinshow B (2006) Temporal dynamics of a T-cell mediated immune response in desert rodents. Comp Biochem Physiol A 145:554–559

    Article  Google Scholar 

  • Bligh-Tynan ME, Bhagwat SA, Thomas W (1993) The effects of chronic cold exposure on diurnal corticosterone and aldosterone rhythms in Sprague-Dawley rats. Physiol Behav 54:363–367

    Article  CAS  PubMed  Google Scholar 

  • Bubenik GA, Brownlee L (1987) Assessing health of male white-tailed deer by white blood cell counts. J Wildlife Manage 51:57–58

    Article  Google Scholar 

  • Calder PC, Kew S (2002) The immune system: a target for functional foods? Brit J Nutr 88:S165-176

    Article  CAS  PubMed  Google Scholar 

  • Carroll JA, Burdick NC, Chase CC, Coleman SW, Spiers DE (2012) Influence of environmental temperature on the physiological, endocrine, and immune responses in livestock exposed to a provocative immune challenge. Domest Anim Endocrinol 43:146–153

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY, Gan JK, Xiao X, Jiang LY, Zhang XQ, Luo QB (2013) The association of SNPs in Hsp90 beta gene 5’ flanking region with thermo tolerance traits and tissue mRNA expression in two chicken breeds. Mol Biol Rep 40:5295–5306

    Article  CAS  PubMed  Google Scholar 

  • Chi QS, Wang DH (2011) Thermal physiology and energetics in male desert hamsters (Phodopus roborovskii) during cold acclimation. J Comp Physiol B 181:91–103

    Article  PubMed  Google Scholar 

  • Cichoń M, Chadzińska M, Książek A, Konarzewski M (2002) Delayed effects of cold stress on immune response in laboratory mice. Proc R Soc B 269:1493–1497

    Article  PubMed  PubMed Central  Google Scholar 

  • Demas GE (2004) The energetics of immunity: a neuroendocrine link between energy balance and immune function. Horm Behav 45:173–180

    Article  CAS  PubMed  Google Scholar 

  • Demas GE, Nelson RJ (1996) Photoperiod and temperature interact to affect immune parameters in male deer mice (Peromyscus maniculatus). J Biol Rhythm 11:94–102

    Article  CAS  Google Scholar 

  • Demas GE, Nelson RJ (1998) Photoperiod, ambient temperature, and food availability interact to affect reproductive and immune function in adult male deer mice (Peromyscus maniculatus). J Biol Rhythm 13:253–262

    Article  CAS  Google Scholar 

  • Demas GE, Drazen DL, Nelson RJ (2003) Reductions in total body fat decrease humoral immunity. Proc R Soc B 270:905–911

    Article  PubMed  PubMed Central  Google Scholar 

  • Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS (2011) Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 80:710–730

    Article  PubMed  Google Scholar 

  • Franco M, Contreras C, Nespolo RF (2013) Profound changes in blood parameters during torpor in a South American marsupial. Com Biochem Physiol A 166:338–342

    Article  CAS  Google Scholar 

  • Gao Y, Wei Y, Cao D, Ge Y, Gong S (2021) Transcriptome analysis reveals decreased immunity under heat stress in Mauremys mutica. Aquaculture 531:735894

    Article  CAS  Google Scholar 

  • Goetz FW, Planas JV, MacKenzie S (2004) Tumor necrosis factors. Dev Comp Immunol 28:487–497

    Article  CAS  PubMed  Google Scholar 

  • Graham AL, Hayward AD, Watt KA, Pilkington JG, Pemberton JM, Nussey DH (2010) Fitness correlates of heritable variation in antibody responsiveness in a wild mammal. Science 330:662–665

    Article  CAS  PubMed  Google Scholar 

  • Hammond KA, Wunder BA (1995) Effect of cold temperatures on the morphology of gastrointestinal tracts of two microtine rodents. J Mammal 76:232–239

    Article  Google Scholar 

  • Hangalapura BN, Kaiser MG, Poel JJ, Parmentier HK, Lamont SJ (2006) Cold stress equally enhances in vivo pro-inflammatory cytokine gene expression in chicken lines divergently selected for antibody responses. Dev Comp Immunol 30:500–511

    Article  Google Scholar 

  • Harikrishnan R, Kim MC, Kim JS, Balasundaram C, Heo MS (2011) Protective effect of herbal and probiotics enriched diet on haematological and immunity status of Oplegnathus fasciatus (Temminck & Schlegel) against Edwardsiella tarda. Fish Shellfish Immun 30:886–893

    Article  Google Scholar 

  • Houston AI, McNamara JM, Barta Z, Klasing KC (2007) The effect of energy reserves and food availability on optimal immune defence. Proc R Soc B 274:2835–2842

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Hu YX, Han DP, Wang M (2011) Chronic heat stress weakened the innate immunity and increased the virulence of highly pathogenic avian influenza virus H5N1 in mice. J Biomed Biotechnol 2011:1–11

    Article  Google Scholar 

  • Kelley DW, Osborne CA, Evermann JF, Parish SM, Gaskins CT (1982) Effects of chronic heat and cold stressors on plasma immunoglobulin and mitogen-induced blastogenesis in calves. J Dairy Sci 65:1514–1528

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kang JC (2016) Changes in hematological parameters, plasma cortisol, and acetylcholinesterase of juvenile rockfish, Sebastes schlegelii supplemented with the dietary ascorbic acid. Aquacult Rep 4:80–85

    Google Scholar 

  • Konarzewski M, Diamond J (1995) Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution 49:1239–1248

    Article  PubMed  Google Scholar 

  • Kozyreva TV, Eliseeva LS (2000) Immune response in cold exposures of different types. J Therm Biol 25:401–404

    Article  CAS  PubMed  Google Scholar 

  • Kozyreva TV, Eliseeva LS (2004) The immune system response to antigen in cold- and warm-adapted rats. J Therm Biol 29:865–869

    Article  CAS  Google Scholar 

  • Krams I, Cirule D, Krama T, Vrublevskam J (2011) Extremely low ambient temperature affects haematological parameters and body condition in wintering Great Tits (Parus major). J Ornithol 152:889–895

    Article  Google Scholar 

  • Krause JS, Németh Z, Pérez JH, Chmura HE, Ramenofsky M, Wingfield JC (2016) Annual hematocrit profiles in two subspecies of white-crowned sparrow: a migrant and a resident comparison. Physiol Biochem Zool 89:51–60

    Article  PubMed  Google Scholar 

  • Krishnamoorthy RV, Shakunthala N (1974) Increased rbc count and pulmonary respiration in cold-adapted frogs. J Exp Biol 61:285–291

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto K, Saitoh T (2008) Effects of cold stress on immune function in the grey-sided vole, Clethrionomys rufocanus. Mamm Study 33:11–18

    Article  Google Scholar 

  • Li SR, Li JH, Chen W, Xu ZW, Xie L, Zhang YP (2021) Effects of simulated heat wave on oxidative physiology and immunity in Asian yellow pond turtle (Mauremys mutica). Front Ecol Evol. https://doi.org/10.3389/fevo.2021.704105

    Article  Google Scholar 

  • Lu HQ, Li YC, Zhang XD (1987) Age determination, age structure and population dynamics of striped hamster. Acta Theriol Sin 7:28–34 (In Chinese with English Subtract)

    Google Scholar 

  • Marketon JIW, Glaser R (2008) Stress hormones and immune function. Cell Immunol 252:16–26

    Article  Google Scholar 

  • Monroy FP, Banerjee SK, Duong T, Aviles H (1999) Cold stress-induced modulation of inflammatory responses and intracerebral cytokine mRNA expression in acute murine toxoplasmosis. J Parasitol 85:878–886

    Article  CAS  PubMed  Google Scholar 

  • Moret Y, Schmid-Hempel P (2000) Survival for immunity: the price of immune system activation for bumblebee workers. Science 290:1166–1168

    Article  CAS  PubMed  Google Scholar 

  • Palenske NM, Saunders DK (2003) Blood viscosity and hematology of American bullfrogs (Rana catesbeiana) at low temperature. J Therm Biol 28:271–277

    Article  Google Scholar 

  • Peli A, Scagliarini L, Bergamini PF, Prosperi A, Bernardini D, Pietra M (2013) Influence of heat stress on the immunity in growing beef cattle. Large Anim Rev 19:215–218

    Google Scholar 

  • Picó C, Palou M, Pomar CA, Rodríguez AM, Palou A (2022) Leptin as a key regulator of the adipose organ. Rev Endocr Metab Dis 23:13–30

    Article  Google Scholar 

  • Plasman M, Torres R (2019) Feeling the heat: extreme temperatures compromise constitutive innate humoral immunity and skin color in a desert dwelling lizard. J Therm Biol 83:142–149

    Article  PubMed  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    CAS  PubMed  Google Scholar 

  • Savino W, Dardenne M (2000) Neuroendocrine control of thymus physiology. Endocr Rev 21:412–443

    CAS  PubMed  Google Scholar 

  • Schäffler A, Schölmerich J, Salzberger B (2007) Adipose tissue as an immunological organ: toll-like receptors, C1q/TNFs and CTRPs. Trends Immunol 28:393–399

    Article  PubMed  Google Scholar 

  • Shapira L, Houri-Haddad Y, Frolov I, Halabi A, Ben-Nathan D (1999) The effect of stress on the inflammatory response to Porphyromonas gingivalis in a mouse subcutaneous chamber model. J Periodontol 70:289–293

    Article  CAS  PubMed  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  CAS  PubMed  Google Scholar 

  • Shu J, Stevenson JR, Zhou X (1993) Modulation of cellular immune responses by cold water swim stress in the rat. Dev Comp Immunol 17:357–371

    Article  CAS  PubMed  Google Scholar 

  • Smith KG, Hunt JL (2004) On the use of spleen mass as a measure of avian immune system strength. Oecologia 138:28–31

    Article  PubMed  Google Scholar 

  • Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572

    Article  Google Scholar 

  • Tao S, Monteiro AP, Thompson IM, Hayen MJ, Dahl GE (2012) Effect of late gestation maternal heat stress on growth and immune function of dairy calves. J Dairy Sci 95:7128–7136

    Article  CAS  PubMed  Google Scholar 

  • Tieleman BI, Williams JB, Ricklefs RE, Klasing KC (2005) Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds. Proc R Soc B 272:1715–1720

    Article  Google Scholar 

  • Trayhurn P (2005) Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand 184:285–293

    Article  CAS  PubMed  Google Scholar 

  • Weber DK, Danielson K, Wright S, Foley JE (2002) Hematology and serum biochemistry values of dusky-footed wood rat (Neotoma fuscipes). J Wildlife Dis 38:576–582

    Article  CAS  Google Scholar 

  • Wei Y, Gao Y, Cao D, Ge Y, Shi H, Gong S (2020) Effects of acute temperature stress on mRNA expression of transferrin in the yellow pond turtle Mauremys mutica. Asian Herpetol Res 11:124–131

    Google Scholar 

  • Xu DL, Hu XK (2017) Photoperiod and temperature differently affect immune function in striped hamsters (Cricetulus barabensis). Comp Biochem Physiol A 204:211–218

    Article  CAS  Google Scholar 

  • Xu DL, Hu XK (2020) Season and sex have different effects on hematology and cytokines in striped hamsters (Cricetulus barabensis). J Comp Physiol B 190:87–100

    Article  CAS  PubMed  Google Scholar 

  • Xu DL, Wang DH (2010) Fasting suppresses T cell-mediated immunity in female Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol A 155:25–33

    Article  Google Scholar 

  • Xu DL, Liu XY, Wang DH (2011) Food restriction and refeeding have no effect on cellular and humoral immunity in Mongolian gerbils (Meriones unguiculatus). Physiol Biochem Zool 84:87–98

    Article  CAS  PubMed  Google Scholar 

  • Xu DL, Hu XK, Tian YF (2017) Effect of temperature and food restriction on immune function in striped hamsters (Cricetulus barabensis). J Exp Biol 220:2187–2195

    PubMed  Google Scholar 

  • Xu DL, Hu XK, Tian YF (2018) Seasonal variations in cellular and humoral immunity in male striped hamsters (Cricetulus barabensis). Biol Open 7:1–8

    Google Scholar 

  • Xu DL, Xu MM, Wang DH (2019a) Effect of temperature on antioxidant defense and innate immunity in Brandt’s voles. Zool Res 40:305–316

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu DL, Xu MM, Wang DH (2019b) Effects of air temperatures on antioxidant defense and immunity in Mongolian gerbils. J Therm Biol 84:111–120

    Article  CAS  PubMed  Google Scholar 

  • Yang DB, Xu YC, Wang DH, Speakman JR (2013) Effects of reproduction on immuno-suppression and oxidative damage, and hence support or otherwise for their roles as mechanisms underpinning life history tradeoffs, are tissue and assay dependent. J Exp Biol 216:4242–4250

    CAS  PubMed  Google Scholar 

  • Zhang ZB, Wang ZW (1998) Ecology and management of rodent pests in agriculture. Ocean Publishing House, Beijing

    Google Scholar 

  • Zhang XY, Wang DH (2006) Energy metabolism, thermogenesis and body mass regulation in Brandt’s voles (Lasiopodomys brandtii) during cold acclimation and rewarming. Horm Behav 50:61–69

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chen B, Yuan L, Niu C (2015) Acute cold stress improved the transcription of pro-inflammatory cytokines of Chinese soft-shelled turtle against Aeromonas hydrophila. Dev Comp Immunol 49:127–137

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZJ, Cao J, Meng XL, Li YB (2010) Seasonal variations in metabolism and thermoregulation in the striped hamster (Cricetulus barabensis). J Therm Biol 35:52–57

    Article  Google Scholar 

  • Zimmerman LM, Bowden RM, Vogel LA (2014) A vertebrate cytokine primer for eco-immunologists. Funct Ecol 28:1061–1073

    Article  Google Scholar 

  • Zysling DA, Demas GE (2007) Metabolic stress suppresses humoral immune function in long-day, but not short-day, Siberian hamsters (Phodopus sungorus). J Comp Physiol B 177:339–347

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was supported by grants from the National Natural Science Foundation of China (32171496; 31770444) and the State Key Laboratory of Integrated Management of Pest Insects and Rodents (Grant no. IMP2104). We are grateful for the valuable suggestions provided by the two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Contributions

DLX conceived and designed the experiment. YHW carried out this experiment. DLX analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to De-Li Xu.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest. This paper had no any relevant financial interests that may influence the interpretation of the results.

Additional information

Handling editor: Emmanuel Serrano.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, DL., Wang, Y. Effect of gradual increase and decrease in temperature on innate, cellular and humoral immunity in striped hamsters. Mamm Biol 103, 265–276 (2023). https://doi.org/10.1007/s42991-023-00351-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-023-00351-w

Keywords

Navigation