Skip to main content
Log in

Uniform convergence for linear elastostatic systems with periodic high contrast inclusions

  • Original Paper
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

We consider the Lamé system of linear elasticity with periodically distributed inclusions whose elastic parameters have high contrast compared to the background media. We develop a unified method based on layer potential techniques to quantify three convergence results when some parameters of the elastic inclusions are sent to extreme values. More precisely, we study the incompressible inclusions limit where the bulk modulus of the inclusions tends to infinity, the soft inclusions limit where both the bulk modulus and the shear modulus tend to zero, and the hard inclusions limit where the shear modulus tends to infinity. Our method yields convergence rates that are independent of the periodicity of the inclusions array, and are sharper than some earlier results of this type. A key ingredient of the proof is the establishment of uniform spectra gaps for the elastic Neumann-Poincaré operator associated to the collection of periodic inclusions that are independent of the periodicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availibility Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Agranovich, M., Amosov, B., Levitin, M.: Spectral problems for the lamé system with spectral parameter in boundary conditions on smooth or nonsmooth boundary. Russ. J. Math. Phys. 6, 10 (1999)

    Google Scholar 

  2. Ammari, H., Garapon, P., Kang, H., Lee, H.: A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements. Q. Appl. Math. 66(1), 139–175 (2008)

    Article  MathSciNet  Google Scholar 

  3. Ammari, H., Kang, H.: Polarization and moment tensors: with applications to inverse problems and effective medium theory, vol. 162. Springer, Berlin (2007)

    Google Scholar 

  4. Ammari, H., Kang, H., Kim, K., Lee, H.: Strong convergence of the solutions of the linear elasticity and uniformity of asymptotic expansions in the presence of small inclusions. J Differ Equ 254(12), 4446–4464 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ammari, H., Kang, H., Lee, H.: Layer Potential Techniques in Spectral Analysis. Number 153. American Mathematical Society (2009)

  6. Ando, K., Ji, Y.-G., Kang, H., Kim, K., Yu, S.: Spectral properties of the Neumann-Poincaré operator and cloaking by anomalous localized resonance for the elasto-static system. Eur. J. Appl. Math. 29(2), 189–225 (2018)

    Article  Google Scholar 

  7. Ando, K., Kang, H., Miyanishi, Y.: Elastic Neumann-Poincaré operators on three dimensional smooth domains: polynomial compactness and spectral structure. Int. Math. Res. Not. IMRN 12, 3883–3900 (2019)

    Article  Google Scholar 

  8. Baffico, L., Grandmont, C., Maday, Y., Osses, A.: Homogenization of elastic media with gaseous inclusions. Multiscale Model. Simul. 7(1), 432–465 (2008)

  9. Bao, E.S., Li, Y.Y., Yin, B.: Gradient estimates for the perfect conductivity problem. Arch. Ration. Mech. Anal. 193(1), 195–226 (2009)

    Article  MathSciNet  Google Scholar 

  10. Bao, J., Li, H., Li, Y.: Gradient estimates for solutions of the Lamé system with partially infinite coefficients. Arch. Ration. Mech. Anal. 215(1), 307–351 (2015)

    Article  MathSciNet  Google Scholar 

  11. Bonnetier, É., Dapogny, C., Triki, F.: Homogenization of the eigenvalues of the Neumann-Poincaré operator. Arch. Ration. Mech. Anal. 234(2), 777–855 (2019)

    Article  MathSciNet  Google Scholar 

  12. Bunoiu, R., Chesnel, L., Ramdani, K., Rihani, M.: Homogenization of maxwell’s equations and related scalar problems with sign-changing coefficients. In: Annales de la Faculté des Sciences de Toulouse. Mathématiques. (2020)

  13. Cioranescu, D., Paulin, J.S.J.: Homogenization in open sets with holes. J. Math. Anal. Appl. 71(2), 590–607 (1979)

    Article  MathSciNet  Google Scholar 

  14. Craster, R., Diatta, A., Guenneau, S., Hutridurga, H.: On near-cloaking for linear elasticity. Multiscale Model. Simul. 19(2), 633–664 (2021)

    Article  MathSciNet  Google Scholar 

  15. Dahlberg, B.E., Kenig, C.E., Verchota, G.C.: Boundary value problems for the systems of elastostatics in lipschitz domains. Duke Math. J. 57(3), 795–818 (1988)

    Article  MathSciNet  Google Scholar 

  16. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology: Volume 4 Integral Equations and Numerical Methods, vol. 4. Springer, New York (1999)

    Google Scholar 

  17. Escauriaza, L., Seo, J.K.: Regularity properties of solutions to transmission problems. Trans. Am. Math. Soc. 338(1), 405–430 (1993)

    Article  MathSciNet  Google Scholar 

  18. Fabes, E.B., Jodeit, M., Rivière, N.M.: Potential techniques for boundary value problems on \(C^1\)-domains. Acta Mathematica 141, 165–186 (1978)

    Article  MathSciNet  Google Scholar 

  19. Fabes, E.B., Kenig, C.E., Verchota, G.C.: The Dirichlet problem for the stokes system on Lipschitz domains. Duke Math. J. 57(3), 769–793 (1988)

    Article  MathSciNet  Google Scholar 

  20. Greenleaf, J.F., Fatemi, M., Insana, M.: Selected methods for imaging elastic properties of biological tissues. Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Jikov, V.V., Kozlov, S.M., Oleĭnik, O.A.: Homogenization of differential operators and integral functionals. Springer, Berlin (1994)

    Book  Google Scholar 

  22. Jing, W.: A unified homogenization approach for the Dirichlet problem in perforated domains. SIAM J. Math. Anal. 52(2), 1192–1220 (2020)

    Article  MathSciNet  Google Scholar 

  23. Jing, W.: Layer potentials for Lamé systems and homogenization of perforated elastic medium with clamped holes. Calc. Var. Partial Differ. Equ. 60(1), 32 (2021)

    Article  Google Scholar 

  24. Jing, W.: Convergence rate for the homogenization of diffusions in dilutely perforated domains with reflecting boundaries. Minimax Theory Appl. 8(1), 85–108 (2023)

    MathSciNet  Google Scholar 

  25. Jing, W., Lu, Y., Prange, C.: Unified quantitative analysis of the Stokes equations in perforated domains via layer potentials (in preparation)

  26. Khavinson, D., Putinar, M., Shapiro, H.S.: Poincaré’s variational problem in potential theory. Arch. Ration. Mech. Anal. 185(1), 143–184 (2007)

    Article  MathSciNet  Google Scholar 

  27. Kupradze, V.D.: Three-Dimensional Problems of Elasticity and Thermoelasticity. Elsevier, Amsterdam (2012)

    Google Scholar 

  28. Ladyzenskaja, O.A.: Funktionalanalytische Untersuchungen der Navier-Stokesschen Gleichungen. Akademie-Verlag, Berlin (1965)

    Google Scholar 

  29. Landau, L., Lifshitz, E., Kosevich, A., Sykes, J., Pitaevskii, L., Reid, W.: Theory of Elasticity: Course of Theoretical Physics, vol. 7. Elsevier Science, Amsterdam (1986)

    Google Scholar 

  30. Manduca, A., Oliphant, T.E., Dresner, M.A., Mahowald, J., Kruse, S.A., Amromin, E., Felmlee, J.P., Greenleaf, J.F., Ehman, R.L.: Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med. Image Anal. 5(4), 237–254 (2001)

    Article  CAS  PubMed  Google Scholar 

  31. Oleĭnik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical problems in elasticity and homogenization. Studies in Mathematics and its Applications, vol. 26. North-Holland Publishing Co., Amsterdam (1992)

  32. Sakoda, K.: Optical Properties of Photonic Crystals, vol. 80. Springer, Berlin (2004)

    Google Scholar 

  33. Shen, Z.: Large-scale Lipschitz estimates for elliptic systems with periodic high-contrast coefficients. Commun. Partial Differ. Equ. 46(6), 1027–1057 (2021)

    Article  MathSciNet  Google Scholar 

  34. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer, Berlin (2007)

    Google Scholar 

  35. Taylor, M.: Partial Differential Equations II: Qualitative Studies of Linear Equations, vol. 116. Springer, Berlin (2013)

    Google Scholar 

  36. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis, vol. 343. American Mathematical Society (2001)

  37. Wang, L., Xu, Q., Zhao, P.: Convergence rates for linear elasticity systems on perforated domains. Calc. Var. Partial Differ. Equ. 60(2), 51 (2021)

    Article  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Long Jin for helpful discussions on pseudo-differential calculus for the layer potential operators associated to Lamé systems.

Funding

The work of WJ is partially supported by the NSF of China under Grant No. 11871300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjia Jing.

Ethics declarations

Conflict of interest

None.

Additional information

The manuscript belongs to Applications of PDEs editor by Hyeonbae Kang.

Some useful facts and technical tools

Some useful facts and technical tools

In this appendix we record some important facts that are used frequently in this paper.

1.1 The second Korn’s inequality

Lemma A.1

(The second Korn’s inequality) Let \(\Omega \) be a bounded Lipschitz domain in \({\mathbb {R}}^d\), and let V be a closed subspace of vector valued functions in \(H^1(\Omega )\) such that \(V\cap {\textbf{R}} =\{0\}\), where \({\textbf{R}}\) is the rigid displacements space. Then every \({\textbf{v}}\in V\) satisfies

$$\begin{aligned} \Vert {\textbf{v}}\Vert _{H^1(\Omega )}\le C\Vert \mathbb {D}({\textbf{v}})\Vert _{L^2(\Omega )}, \end{aligned}$$

where the constant C only depends on \(\Omega \).

For the proof we refer to [31].

1.2 A coercive lemma

The following version of Lax-Milgram theorem allowed us to prove that certain bounded linear operators are invertible by showing they are coercive.

Lemma A.2

Let H be a Hilbert space, and let \(A \in {\mathcal {L}}(H)\) be a bounded linear operator. Suppose that there exists \(\gamma >0\) such that

$$\begin{aligned} (Ax,x)_{H} \ge \gamma \Vert x\Vert _{H}^2 \quad \mathrm {for \ any\ }x\in H. \end{aligned}$$
(A.1)

Then A has a bounded inverse, and \(\Vert A^{-1}\Vert _{{\mathcal {L}}(H)}\le \gamma ^{-1}\).

We then have the following result as a direct consequence.

Lemma A.3

Let H be a Hilbert space and \(H^*\) its dual space. Suppose \(A: H \rightarrow H^*\) is a bounded linear operator, and, moreover, there exists \(\gamma >0\) such that

$$\begin{aligned} \langle x,Ax \rangle _{H,H^*} \ge \gamma \Vert x\Vert _{H}^2 \quad \mathrm {for \ any\ }x\in H. \end{aligned}$$
(A.2)

Then A has a bounded inverse, and \(\Vert A^{-1}\Vert _{{\mathcal {L}}(H^*,H)}\le \gamma ^{-1}\).

Proof

Let \(\iota : H^* \rightarrow H\) be the canonical dual isometry, i.e. for any \(\phi \in H^*\) and for any \(y\in H\),

$$\begin{aligned} (\iota (\phi ), y)_{H}=\langle y,\phi \rangle _{H,H^*}. \end{aligned}$$

It follows that \(\iota A\) satisfies the conditions of Lemma A.2; indeed,

$$\begin{aligned} (\iota (Ax),x)_{H} =\langle x,Ax\rangle _{H,H^*} \ge \gamma \Vert x\Vert _{H}^2. \end{aligned}$$

It follows that \(\iota A\) has an inverse with the desired bound. Since \(\iota \) is an isometry, the desired result for A also follows. \(\square \)

1.3 Proof of Lemma 4.1

The uniqueness of \({\textbf{u}}\) is clear, so it suffices to construct a solution. Let \({\textbf{v}}\in H^1(\Omega )\) be the unique solution of

$$\begin{aligned} {\mathcal {L}}_{\lambda ,\mu }{\textbf{v}}=0 \ \ \textrm{in}\ \Omega _{\varepsilon }, \quad {\textbf{v}}|_{D_{\varepsilon }}=0, \quad \left. \frac{\partial {\textbf{v}}}{\partial \nu _{(\lambda ,\mu )}}\right| _{\partial \Omega }={\textbf{g}}. \end{aligned}$$
(A.3)

For each \({\textbf{m}}\in \Pi _{\varepsilon }\) and \(l\in \{1,\ldots ,\frac{d(d+1)}{2}\}\), let \({\textbf{v}}_{{\textbf{m}}}^l\in H^1(\Omega )\) be the solution of

$$\begin{aligned} {\mathcal {L}}_{\lambda ,\mu } {\textbf{v}}_{{\textbf{m}}}^l=0 \ \ \textrm{in}\ \Omega _{\varepsilon }, \quad {\textbf{v}}_{{\textbf{m}}}^l|_{\omega _{{\textbf{n}}}^{\varepsilon }}=\delta _{{\textbf{m}}{\textbf{n}}}{\textbf{r}}_l\quad \mathrm {for\ all}\ {\textbf{n}}\in \Pi _{\varepsilon },\quad \left. \frac{\partial {\textbf{v}}_{{\textbf{m}}}^l}{\partial \nu _{(\lambda ,\mu )}}\right| _{\partial \Omega }=0. \end{aligned}$$
(A.4)

The existence and uniqueness, both for \({\textbf{v}}\) and \({\textbf{v}}_{{\textbf{m}}}^l\), follow from a standard practice of weak formulation and an application of Lax-Milgram theorem. Moreover, the functions \(\{{\textbf{v}}^l_{{\textbf{m}}}\}\) are independent as elements of \({\mathcal {E}}\).

For the solution to (4.5), we consider a function \({\textbf{u}}\) of the form

$$\begin{aligned} {\textbf{u}}:={\textbf{v}}+\sum _{{\textbf{m}}\in \Pi _{\varepsilon }}\sum _{l=1}^{\frac{d(d+1)}{2}} a_{{\textbf{m}}}^l {\textbf{v}}_{{\textbf{m}}}^l, \end{aligned}$$
(A.5)

where \(\{a_{{\textbf{m}}}^l\}\subset {\mathbb {R}}\) are constants to be chosen. Clearly, \({\textbf{u}} \in H^1(\Omega )\) already satisfies \({\textbf{u}} \in {\textbf{R}}\) in each component of \(D_\varepsilon \), and

$$\begin{aligned} {\mathcal {L}}_{\lambda ,\mu }{\textbf{u}} =0 \ \ \textrm{in} \ \Omega _{\varepsilon },\quad \left. \frac{\partial {\textbf{u}}}{\partial \nu _{(\lambda ,\mu )}}\right| _{\partial \Omega }={\textbf{g}}. \end{aligned}$$

We choose \(a_{{\textbf{m}}}^l\)’s so that \({\textbf{u}}\) also satisfies the remaining equation in (4.5), namely,

$$\begin{aligned} \sum _{{\textbf{m}}\in \Pi _{\varepsilon }}\sum _{l=1}^{\frac{d(d+1)}{2}} a_{{\textbf{m}}}^l \int _{\partial \omega ^{{\textbf{n}}}_{\varepsilon }} \left. \frac{\partial {\textbf{v}}_{{\textbf{m}}}^l}{\partial \nu _{(\lambda ,\mu )}} \right| _+\cdot {\textbf{r}}_j = b^l_{{\textbf{n}}}:= c_{{\textbf{n}}}^j -\int _{\partial \omega ^{{\textbf{n}}}_{\varepsilon }} \left. \frac{\partial {\textbf{v}}}{\partial \nu _{(\lambda ,\mu )}} \right| _+\cdot {\textbf{r}}_j. \end{aligned}$$
(A.6)

The equation above can be viewed as a linear system of the form \(A {\textbf{a}} = {\textbf{b}}\) where the unknown is \({\textbf{a}} = (a^l_{{\textbf{m}}}) \in \mathbb {R}^{|\Pi _\varepsilon |d(d+1)/2}\), the right hand side vector \({\textbf{b}} = (b^j_{{\textbf{n}}})\) is defined above and the coefficient matrix \(A = (A^{jl}_{{\textbf{n}}{\textbf{m}}})\) is defined by

$$\begin{aligned} A^{jl}_{{\textbf{n}}{\textbf{m}}}= \int _{\partial \omega ^{{\textbf{n}}}_{\varepsilon }} \Big (\left. \frac{\partial {\textbf{v}}_{{\textbf{m}}}^l}{\partial \nu _{(\lambda ,\mu )}} \right| _+\cdot {\textbf{r}}_j \Big ). \end{aligned}$$
(A.7)

We need to show that this linear system has a solution.

Let \({\mathcal {X}} \subset {\mathbb {R}}^{ |\Pi _{\varepsilon }| d(d+1)/2}\) be the subspace defined by

$$\begin{aligned} {\mathcal {X}}:=\left\{ (x_{{\textbf{n}}}^j ) \in {\mathbb {R}}^{|\Pi _{\varepsilon }|\times \frac{d(d+1)}{2}}:\sum _{{\textbf{n}}\in \Pi _{\varepsilon }} x_{{\textbf{n}}}^j =0\quad \mathrm {for \ all\ }1\le j \le \frac{d(d+1)}{2} \right\} , \end{aligned}$$
(A.8)

Clearly, \(\textrm{dim}\,{\mathcal {X}}=\frac{d(d+1)}{2}|\Pi _{\varepsilon }|-\frac{d(d+1)}{2}\). By the definition of \({\textbf{v}}\) and the condition (4.4), we see \({\textbf{b}} \in {\mathcal {X}}\). It suffices to show that the range of A contains (actually, is) \({\mathcal {X}}\). First, we can check directly that the range of A is contained in \({\mathcal {X}}\). Indeed, for any \({\textbf{p}} = (p^l_{{\textbf{m}}})\), we compute and get

$$\begin{aligned} \sum _{{\textbf{n}}\in \Pi _\varepsilon } (A{\textbf{p}})^j_{{\textbf{n}}} = \sum _{{\textbf{n}} \in \Pi _\varepsilon } \int _{\partial \omega ^{{\textbf{n}}}_\varepsilon } \Big (\left. \frac{\partial (p^l_{{\textbf{m}}} {\textbf{v}}_{{\textbf{m}}}^l)}{\partial \nu _{(\lambda ,\mu )}} \right| _+\cdot {\textbf{r}}_j \Big ) = -J^{\Omega _\varepsilon }(\mathbf {{\textbf{w}}},r_j) = 0, \end{aligned}$$

where we defined \({\textbf{w}}:= p^l_{{\textbf{m}}} {\textbf{v}}^l_{{\textbf{m}}}\) and the summation convention is used. We also used the fact that \({\textbf{w}}\) solves the homogeneous Lamé system in \(\Omega _\varepsilon \) with \(\partial {\textbf{w}}/\partial \nu |_{\partial \Omega } = 0\) and \({\textbf{w}}|_{\omega ^{{\textbf{n}}}} = p^l_{{\textbf{n}}} {\textbf{r}}_l\) (in particular, \({\textbf{w}} \in {\textbf{R}}\) in each component of \(D_\varepsilon \)).

For our purpose, it remains to show that the kernel of A has dimension \(d(d+1)/2\). Suppose \({\textbf{p}} = (p^l_{{\textbf{m}}})\) satisfies \(A{\textbf{p}} = 0\). Then the function \({\textbf{w}} = p^l_{{\textbf{m}}}{\textbf{v}}^l_{{\textbf{m}}}\) has the property discussed above and further satisfies \(\int _{\partial \omega ^{{\textbf{n}}}_\varepsilon } \partial {\textbf{w}}/\partial \nu |_+ \cdot {\textbf{r}}_j = 0\) for all j and \({\textbf{n}}\). From this we get \(J^{\Omega _\varepsilon }(\omega ) = 0\). Hence \({\textbf{w}} \in {\textbf{R}}\) in \(\Omega _\varepsilon \) and then \({\textbf{w}} \in {\textbf{R}}\) in \(\Omega \). To summarize, we proved that \(A{\textbf{p}} = 0\) implies \({\textbf{w}}({\textbf{p}}):= p^l_{{\textbf{m}}}{\textbf{v}}^l_{{\textbf{m}}} \in {\textbf{R}}\). It is easier to show that the reverse implication also holds, and that \({\textbf{p}} \rightarrow {\textbf{w}}({\textbf{p}})\) is an isomorphsim from \(\mathbb {R}^{|\Pi _\varepsilon |d(d+1)/2}\) to \(\textrm{span}({\textbf{v}}^l_{{\textbf{m}}})\). Moreover \({\textbf{R}}\subset \textrm{span}\{{\textbf{v}}^l_{{\textbf{m}}}\}\) is a \(d(d+1)/2\) dimensional subspace. The proof is hence complete.

1.4 Proof of Lemma 4.2

Again, the uniqueness is clear and we only need to construct a solution. The proof is very similar to the proof of Lemma 4.1 presented in the previous section, so we omit some details.

Let \({\textbf{v}}\in H^1(\Omega )\) be the unique solution of

$$\begin{aligned} {\mathcal {L}}_{\lambda ,\mu }{\textbf{v}}=0 \ \ \textrm{in}\ \Omega _{\varepsilon }, \quad {\textbf{v}}|_{D_{\varepsilon }}=0, \quad {\textbf{v}}|_{\partial \Omega }={\textbf{f}}. \end{aligned}$$

For each \({\textbf{m}} \in \Pi _\varepsilon \) and \(l = 1,2,\dots ,d(d+1)/2\), let \({\textbf{v}}_{{\textbf{m}}}^l\in H^1(\Omega )\) be the unique solution of

$$\begin{aligned} {\mathcal {L}}_{\lambda ,\mu } {\textbf{v}}_{{\textbf{m}}}^l=0 \ \ \textrm{in}\ \Omega _{\varepsilon }, \quad {\textbf{v}}_{{\textbf{m}}}^l|_{\omega _{{\textbf{n}}}^{\varepsilon }}=\delta _{{\textbf{m}}{\textbf{n}}}{\textbf{r}}_l \quad \mathrm {for\ all}\ {\textbf{n}}\in \Pi _{\varepsilon },\quad {\textbf{v}}_{{\textbf{m}}}^l|_{\partial \Omega }=0. \end{aligned}$$

We seek a solution to (4.6) of the form

$$\begin{aligned} {\textbf{u}}:={\textbf{v}}+\sum _{{\textbf{m}}\in \Pi _{\varepsilon }}\sum _{l=1}^{\frac{d(d+1)}{2}} a_{{\textbf{m}}}^l {\textbf{v}}_{{\textbf{m}}}^l. \end{aligned}$$
(A.9)

As in the previous section, it suffices to find the constant vector \({\textbf{a}} = (a^l_{{\textbf{m}}})\) that solve the linear system \(A{\textbf{a}} = {\textbf{b}}\), where A and \({\textbf{b}}\) has the same forms as in (A.7) and (A.6), but with \({\textbf{v}}^l_{\textbf{m}}\)’s and \({\textbf{v}}\) redefined in this section. We prove that A is invertible so the linear system has a unique solution. Suppose \({\textbf{p}} = (p^l_{{\textbf{m}}})\) satisfies \(A{\textbf{p}} = 0\). Then \({\textbf{w}} = p^l_{\textbf{m}}{\textbf{v}}^l_{\textbf{m}}\) satisfies \({\textbf{w}} \in {\textbf{R}}\) in each component of \(D_\varepsilon \), solves the homogeneous Lamé system in \(\Omega _\varepsilon \), satisfies \({\textbf{w}}|_{\partial \Omega } = 0\), and, moreover, \(\partial {\textbf{w}}/\partial \nu |_{+} = 0\) on \(\partial D_\varepsilon \). It follows that

$$\begin{aligned} {\textbf{w}} \in \mathfrak {H}_{{\textbf{R}}}^{\textrm{D}}\cap {\mathcal {S}}^{\textrm{D}}\,\textrm{ker}\,\left( -\frac{{\mathbb {I}}}{2} +{\mathbb {K}}^{\textrm{D},*} \right) =\{0\}. \end{aligned}$$

Again, by the isometry of \({\textbf{p}} \mapsto \textrm{span}\{{\textbf{v}}^l_{{\textbf{m}}}\}\), we get \({\textbf{p}} = 0\). Hence, the kernel of the square matrix A is trivial. This completes the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Jing, W. Uniform convergence for linear elastostatic systems with periodic high contrast inclusions. Partial Differ. Equ. Appl. 5, 2 (2024). https://doi.org/10.1007/s42985-024-00271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-024-00271-5

Keywords

Mathematics Subject Classification

Navigation