Skip to main content
Log in

Dirichlet spectral-Galerkin approximation method for the simply supported vibrating plate eigenvalues

  • Original Paper
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

In this paper, we analyze and implement the Dirichlet spectral-Galerkin method for approximating simply supported vibrating plate eigenvalues with variable coefficients. This is a Galerkin approximation that uses the approximation space that is the span of finitely many Dirichlet eigenfunctions for the Laplacian. Convergence and error analysis for this method is presented for two and three dimensions. Here we will assume that the domain has either a smooth or Lipschitz boundary with no reentrant corners. An important component of the error analysis is Weyl’s law for the Dirichlet eigenvalues. Numerical examples for computing the simply supported vibrating plate eigenvalues for the unit disk and square are presented. In order to test the accuracy of the approximation, we compare the spectral-Galerkin method to the separation of variables for the unit disk. Whereas for the unit square we will numerically test the convergence rate for a variable coefficient problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bourgeois, L., Recoquillay, A.: The linear sampling method for Kirchhoff-Love infinite plates. Inverse Probl. Imaging 14(2), 363–384 (2020)

    Article  MathSciNet  Google Scholar 

  2. Cakoni, F., Colton, D., Haddar, H.: Inverse Scattering Theory and Transmission Eigenvalues. CBMS Series, vol. 88. SIAM Publications, Philadelphia (2016)

    Book  Google Scholar 

  3. Cakoni, F., Colton, D., Haddar, H.: On the determination of Dirichlet or transmission eigenvalues from far field data. C. R. Acad. Sci. Paris 348, 379–383 (2010)

    Article  MathSciNet  Google Scholar 

  4. Kirsch, A., Lechleiter, A.: The inside-outside duality for scattering problems by inhomogeneous media. Inverse Prob. 29, 104011 (2013)

    Article  MathSciNet  Google Scholar 

  5. An, J., Shen, J.: Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem. Comput. & Math. Appl. 69(10), 1132–1143 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cakoni, F., Haddar, H., Harris, I.: Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Probl. Imaging 9(4), 1025–1049 (2015)

    Article  MathSciNet  Google Scholar 

  7. Audibert, L., Chesnel, L., Haddar, H.: Transmission eigenvalues with artificial background for explicit material index identification. C. R. Acad. Sci. Paris, Ser. I 356(6), 626–631 (2018)

    Article  MathSciNet  Google Scholar 

  8. Cakoni, F., Monk, P., Sun, J.: Error analysis of the finite element approximation of transmission eigenvalues. Comput. Method Appl. Math. 14, 419–427 (2014)

    Article  MathSciNet  Google Scholar 

  9. Geng, H., Ji, X., Sun, J., Xu, L.: \(C^0\)IP methods for the transmission eigenvalue problem. J. Sci. Comput. 68, 326–338 (2016)

    Article  MathSciNet  Google Scholar 

  10. Brenner, S.C., Monk, P., Sun, J.: \(C^0\) interior penalty Galerkin method for biharmonic eigenvalue problems. In: Kirby, R., Berzins, M., Hesthaven, J. (eds.) Spectral and High Order Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 106, pp. 3–15. Springer International Publishing, Cham (2014)

    Google Scholar 

  11. Chen, H., Guo, H., Zhang, Z., Zou, Q.: A \(C^0\) linear finite element method for two fourth-order eigenvalue problems. IMA J. Num. Anal. 37, 2120–2138 (2017)

    MATH  Google Scholar 

  12. An, J.: A Legendre-Galerkin spectral approximation and estimation of the index of refraction for transmission eigenvalues. Appl. Numer. Math. 108, 1132–1143 (2016)

    Article  MathSciNet  Google Scholar 

  13. An, J., Shen, J.: A spectral-element method for transmission eigenvalue problems. J. Sci. Comput. 57, 670–688 (2013)

    Article  MathSciNet  Google Scholar 

  14. An, J., Bi, H., Luo, Z.: A highly efficient spectral-Galerkin method based on tensor product for fourth-order Steklov equation with boundary eigenvalue. J. Ineq. Appl. (2016). https://doi.org/10.1186/s13660-016-1158-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, H., Shan, W., Zhang, Z.: \(C^1\)-conforming quadrilateral spectral element method for fourth-order equations. Commun. Appl. Math. Comput. 1, 403–434 (2019)

    Article  MathSciNet  Google Scholar 

  16. Sun, J., Zhou, A.: Finite Element Methods for Eigenvalue Problems, 1st edn. Chapman and Hall/CRC Publications, Boca Raton (2016)

    Book  Google Scholar 

  17. Kleefeld, A., Pieronek, L.: The method of fundamental solutions for computing acoustic interior transmission eigenvalues. Inverse Probl. 34, 035007 (2018)

    Article  MathSciNet  Google Scholar 

  18. Kleefeld, A.: A numerical method to compute interior transmission eigenvalues. Inverse Probl. 29, 104012 (2013)

    Article  MathSciNet  Google Scholar 

  19. Sayas, F., Brown, T., Hassell, M.: Variational Techniques for Elliptic Partial Differential Equations, 1st edn. Chapman and Hall/CRC Publications, Boca Raton (2019)

    Book  Google Scholar 

  20. Harris, I.: Approximation of the zero-index transmission eigenvalues with conductive boundary and parameter estimation. J. Sci. Comput. 82 No. 80 (2020). https://doi.org/10.1007/s10915-020-01183-3

  21. Yang, Y., Bi, H., Zhang, Y.: The adaptive Ciarlet-Raviart mixed method for biharmonic problems with simply supported boundary condition. Appl. Math. Comput. 339, 206–219 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Harris, I.: Analysis of two transmission eigenvalue problems with a coated boundary condition. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1672869

    Article  Google Scholar 

  23. Arendt, W., Nittka, R., Peter, W., Steiner, F.: Weyl’s Law: spectral properties of the Laplacian in mathematics and physics. In: Arendt, W., et al. (eds.) Mathematical Analysis of Evolution, Information, and Complexity, pp. 1–71. Wliey, Weinheim (2009)

    Chapter  Google Scholar 

  24. Osborn, J.: Spectral approximation for compact operators. Math. Comput. 29, 712–725 (1975)

    Article  MathSciNet  Google Scholar 

  25. Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd edn. Springer, New York (2009)

    MATH  Google Scholar 

  26. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    Article  MathSciNet  Google Scholar 

  27. Babuska, I., Osborn, J.E.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. 2, pp. 641–787. North-Holland Publishing Company, Amsterdam (1991)

    Google Scholar 

  28. Steinbach, O., Unger, G.: Convergence analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem. SIAM J. Numer. Anal. 50(2), 710–728 (2012)

    Article  MathSciNet  Google Scholar 

  29. Millar, F., Mora, D.: A finite element method for the buckling problem of simply supported Kirchhoff plates. J. Comput. & Appl. Math. 286, 68–78 (2015)

    Article  MathSciNet  Google Scholar 

  30. Evans, L.: Partial Differential Equations, 2nd edn. AMS, Providence (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Andreas Kleefeld for helpful feedback and suggestions which lead to a much improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Harris.

Additional information

This article is part of the section “Computational Approaches” edited by Siddhartha Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, I. Dirichlet spectral-Galerkin approximation method for the simply supported vibrating plate eigenvalues. Partial Differ. Equ. Appl. 3, 34 (2022). https://doi.org/10.1007/s42985-022-00171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-022-00171-6

Keywords

Mathematics Subject Classification

Navigation