Skip to main content
Log in

An Overview of Techniques for Obfuscated Android Malware Detection

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Obfuscation is a method to hide coding strategies for security and privacy. Despite its positive use, malware experts have also used this technique to develop malware applications. A variety of malware has taken over the market in recent times. This sophisticated malware uses different obfuscation and mutation techniques to deceive the detectors. Obfuscation and mutation attacks are technique variations in which the attacker uses java-reflection techniques and encryption to manipulate the malicious applications and force the classifier to do misclassification. Despite its positive use, malware experts have also used this technique to misguide classifiers. The obfuscated malware is difficult to tackle due to the complexity of there structure and behavior. A fresh look is needed at the available datasets and features used especially for Android obfuscated malware analysis. We investigate and provide a concise account of obfuscated malware detection techniques. We evaluate the importance and effectiveness of obfuscation for Android malware analysis by investigating the techniques, datasets, and feature sets used in the literature. We report supervised learning as more popular for analysis. The paper provides details on the use of datasets such as Debian, genome, Adrozoo, and CIC as the most commonly used in literature. We also investigate certain features, mostly static, considered for analysis and highlight the use of unconventional techniques, such as unsupervised learning and graph theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data-sets used for this research are publicly available on the internet.

References

  1. Aafer Y, Du W, Yin H. Droidapiminer: mining api-level features for robust malware detection in android. In: SecureComm. 2013.

  2. Alam S, Riley R, Sogukpinar I, Carkaci N. Droidclone: detecting android malware variants by exposing code clones. In: 2016 sixth international conference on digital information and communication technology and its applications (DICTAP); 2016. p. 79–84. https://doi.org/10.1109/DICTAP.2016.7544005.

  3. Alswaina F, Elleithy K. Android malware family classification and analysis: current status and future directions. Electronics. 2020;9:942.

    Article  Google Scholar 

  4. Alzaylaee MK, Yerima SY, Sezer S. Dl-droid: deep learning based android malware detection using real devices. Comput Secur. 2020;89:101663.

    Article  Google Scholar 

  5. Amin S, Cárdenas AA, Sastry SS. Safe and secure networked control systems under denial-of-service attacks. In: International workshop on hybrid systems: computation and control. Springer; 2009. p. 31–45.

  6. Amro B. Personal mobile malware guard pmmg: a mobile malware detection technique based on user’s preferences. 2018. arXiv preprint arXiv:1802.04328.

  7. Anwar A, Mahmood AN, Tari Z. Identification of vulnerable node clusters against false data injection attack in an ami based smart grid. Inf Syst. 2015;53:201–12.

    Article  Google Scholar 

  8. Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K. Drebin: effective and explainable detection of android malware in your pocket. 2014. https://doi.org/10.14722/ndss.2014.23247.

  9. Aslan ÖA, Samet R. A comprehensive review on malware detection approaches. IEEE Access. 2020;8:6249–71.

    Article  Google Scholar 

  10. Bakour K, Ünver HM. Deepvisdroid: android malware detection by hybridizing image-based features with deep learning techniques. Neural Comput Appl. 2021;33:11499–516.

    Article  Google Scholar 

  11. Bala N, Ahmar A, Li W, Tovar F, Battu A, Bambarkar P. Droidenemy: battling adversarial example attacks for android malware detection. Digit Commun Netw. 2021;8(6):1040–7.

    Article  Google Scholar 

  12. Baxter ID  Yahin A,  Moura L, Sant'Anna M,  Bier L,  Proceedings: International Conference on Software Maintenance. Clone detection using abstract syntax trees. 1998. p. 368–77. https://doi.org/10.1109/ICSM.1998.738528

  13. Bobba RB, Rogers KM, Wang Q, Khurana H, Nahrstedt K, Overbye TJ. Detecting false data injection attacks on dc state estimation. In: Preprints of the first workshop on secure control systems, CPSWEEK. 2010.

  14. Bolton C, Rampazzi S, Li C, Kwong A, Xu W, Fu K. Blue note: How intentional acoustic interference damages availability and integrity in hard disk drives and operating systems. In: 2018 IEEE symposium on Security and Privacy (SP). IEEE; 2018. p. 1048–62.

  15. Cai H, Meng N, Ryder B, Yao D. Droidcat: effective android malware detection and categorization via app-level profiling. IEEE Trans Inf Forensics Secur. 2018;14:1455–70.

    Article  Google Scholar 

  16. Cai L, Li Y, Xiong Z. Jowmdroid: android malware detection based on feature weighting with joint optimization of weight-mapping and classifier parameters. Compute Secur. 2021;100:102086.

    Article  Google Scholar 

  17. Calleja A, Martín A, Menéndez HD, Tapiador J, Clark D. Picking on the family: disrupting android malware triage by forcing misclassification. Expert Syst Appl. 2018;95:113–26.

    Article  Google Scholar 

  18. Cara F, Scalas M, Giacinto G, Maiorca D. On the feasibility of adversarial sample creation using the android system api. Information. 2020;11:433.

    Article  Google Scholar 

  19. Chandy SE, Rasekh A, Barker ZA, Campbell B, Shafiee ME. Detection of cyber-attacks to water systems through machine-learning-based anomaly detection in scada data. In: World environmental and water resources congress; 2017. p. 611–6.

  20. Chen S, Xue M, Fan L, Hao S, Xu L, Zhu H, Li B. Automated poisoning attacks and defenses in malware detection systems: an adversarial machine learning approach. Comput Secur. 2017;73:326–44. https://doi.org/10.1016/j.cose.2017.11.007.

    Article  Google Scholar 

  21. Chen S, Xue M, Fan L, Hao S, Xu L, Zhu H, Li B. Automated poisoning attacks and defenses in malware detection systems: an adversarial machine learning approach. Comput Secur. 2018;73:326–44.

    Article  Google Scholar 

  22. Chen S, Xue M, Fan L, Ma L, Liu Y, Xu L. How can we craft large-scale android malware? An automated poisoning attack. In: 2019 IEEE 1st international workshop on artificial intelligence for mobile (AI4Mobile). IEEE; 2019. p. 21–4.

  23. Collberg CS, Thomborson C. Watermarking, tamper-proofing, and obfuscation—tools for software protection. IEEE Trans Softw Eng. 2002;28:735–46.

    Article  Google Scholar 

  24. Dalla Preda M, Maggi F. Testing android malware detectors against code obfuscation: a systematization of knowledge and unified methodology. J Comput Virol Hacking Tech. 2017;13:209–32. https://doi.org/10.1007/s11416-016-0282-2.

    Article  Google Scholar 

  25. Dong S, Li M, Diao W, Liu X, Liu J, Li Z, Xu F, Chen K, Wang X, Zhang K. Understanding android obfuscation techniques: A large-scale investigation in the wild. In: International conference on security and privacy in communication systems. Springer; 2018. p. 172–92.

  26. Fan M, Liu J, Luo X, Chen K, Tian Z, Zheng Q, Liu T. Android malware familial classification and representative sample selection via frequent subgraph analysis. IEEE Trans Inf Forensics Secur. 2018;13:1890–905.

    Article  Google Scholar 

  27. Felt AP, Chin E, Hanna S, Song D, Wagner D. Android permissions demystified. In: Proceedings of the 18th ACM conference on Computer and communications security; 2011. p. 627–638.

  28. Ganesh M, Pednekar P, Prabhuswamy P, Nair DS, Park Y, Jeon H. Cnn-based android malware detection. In: 2017 International Conference on Software Security and Assurance (ICSSA). IEEE; 2017. p. 60–5.

  29. Garcia J, Hammad M, Malek S. Lightweight, obfuscation-resilient detection and family identification of android malware. ACM Trans Softw Eng Methodol (TOSEM). 2018;26:1–29.

    Article  Google Scholar 

  30. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63:3–42. https://doi.org/10.1007/s10994-006-6226-1.

    Article  Google Scholar 

  31. Giacomoni M, Gatsis N, Taha A. Identification of cyber attacks on water distribution systems by unveiling low-dimensionality in the sensory data. In: World environmental and water resources congress; 2017. p. 660–75.

  32. Grosse K, Papernot N, Manoharan P, Backes M, McDaniel P. Adversarial examples for malware detection. In: European symposium on research in computer security. Springer; 2017. p. 62–79.

  33. Ham HS, Kim HH, Kim MS, Choi MJ. Linear svm-based android malware detection for reliable iot services. J Appl Math. 2014;2014:1–10. https://doi.org/10.1155/2014/594501.

    Article  Google Scholar 

  34. Haq IU, Khan TA, Akhunzada A, Liu X. Maldroid: secure dl-enabled intelligent malware detection framework. IET Commun. 2021;16(10):1160–71.

    Article  Google Scholar 

  35. Hendrik Metzen, Chaithanya Kumar M, Brox T, Fischer V. Universal adversarial perturbations against semantic image segmentation. In: Proceedings of the IEEE international conference on computer vision; 2017. p. 2755–64.

  36. Housh M, Ohar Z. Model-based approach for cyber-physical attack detection in water distribution systems. Water Res. 2018;139:132–43.

    Article  CAS  PubMed  Google Scholar 

  37. Hsieh WC, Wu CC, Kao YW. A study of android malware detection technology evolution, p. 135–40. 2015. https://doi.org/10.1109/CCST.2015.7389671.

  38. Huang L, Joseph A, Nelson B, Rubinstein B, Tygar J. Proceedings of the 4th ACM workshop on security and artificial intelligence; 2011.

  39. Huang Y, Li H, Campbell KA, Han Z. Defending false data injection attack on smart grid network using adaptive cusum test. In: 2011 45th annual conference on information sciences and systems. IEEE; 2011. p. 1–6.

  40. Jiang Y, Li R, Tang J, Davanian A, Yin H. Aomdroid: detecting obfuscation variants of android malware using transfer learning. In: International conference on security and privacy in communication systems. Springer; 2020. p. 242–53.

  41. John T, Thomas Kallivayalil T. Adversarial attacks and defenses in malware detection classifiers. 2019. https://doi.org/10.4018/978-1-5225-8407-0.ch007.

  42. John TS, Thomas T. Adversarial attacks and defenses in malware detection classifiers. In: Handbook of research on cloud computing and big data applications in ioT. IGI Global; 2019. p. 127–50.

  43. Kalman RE. A new approach to linear filtering and prediction problems. 1960.

  44. Kaspersky. Kaspersky lab: what is flame malware | definition and risks | Kaspersky lab. 2017. http://www.kaspersky.com/flame. Accessed 29 July 2015. Last accessed 16 Sept 2017.

  45. Kaur R, Ning Y, Gonzalez H, Stakhanova N. Unmasking android obfuscation tools using spatial analysis. In: 2018 16th annual conference on privacy, security and trust (PST); 2018. p. 1–10. https://doi.org/10.1109/PST.2018.8514207.

  46. Kim T, Kang B, Rho M, Sezer S, Im EG. A multimodal deep learning method for android malware detection using various features. IEEE Trans Inf Forensics Secur. 2018;14:773–88.

    Article  Google Scholar 

  47. Kitchenham B, Charters S. Guidelines for performing systematic literature reviews in software engineering. 2007.

  48. Kolosnjaji B, Demontis A, Biggio B, Maiorca D, Giacinto G, Eckert C, Roli F. Adversarial malware binaries: evading deep learning for malware detection in executables. In: 2018 26th European Signal Processing Conference (EUSIPCO). IEEE; 2018. p. 533–7.

  49. Krizhevsky A, Hinton G, et al. Learning multiple layers of features from tiny images. 2009.

  50. Kune DF, Backes J, Clark SS, Kramer D, Reynolds M, Fu K, Kim Y, Xu W. Ghost talk: mitigating emi signal injection attacks against analog sensors. In: 2013 IEEE Symposium on Security and Privacy. IEEE; 2013. p. 145–59.

  51. Kural OE, Şahin DO, Akleylek S, Kılıç E, Ömüral M. Apk2img4andmal: android malware detection framework based on convolutional neural network. In: 2021 6th international conference on computer science and engineering (UBMK). IEEE; 2021. p. 731–4.

  52. Kurt MN, Yılmaz Y, Wang X. Distributed quickest detection of cyber-attacks in smart grid. IEEE Trans Inf Forensics Secur. 2018;13:2015–30.

    Article  Google Scholar 

  53. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1:541–51.

    Article  Google Scholar 

  54. Lee WY, Saxe J, Harang R. Seqdroid: obfuscated android malware detection using stacked convolutional and recurrent neural networks. In: Deep learning applications for cyber security. Springer; 2019. p. 197–210.

  55. Li Z, Sun J, Yan Q, Srisa-an W, Tsutano Y. Obfusifier: obfuscation-resistant android malware detection system. In: Chen S, Choo KKR, Fu X, Lou W, Mohaisen A, editors. Security and privacy in communication networks. Cham: Springer; 2019. p. 214–34.

    Chapter  Google Scholar 

  56. Liang G, Weller SR, Zhao J, Luo F, Dong ZY. The 2015 Ukraine blackout: implications for false data injection attacks. IEEE Trans Power Syst. 2016;32:3317–8.

    Article  ADS  Google Scholar 

  57. Liang G, Zhao J, Luo F, Weller SR, Dong ZY. A review of false data injection attacks against modern power systems. IEEE Trans Smart Grid. 2016;8:1630–8.

    Article  Google Scholar 

  58. Liu Y, Ning P, Reiter MK. False data injection attacks against state estimation in electric power grids. ACM Trans Inf Syst Secur (TISSEC). 2011;14:1–33.

    Article  Google Scholar 

  59. Liu Z, Luo P, Wang X, Tang X. Deep learning face attributes in the wild. In: Proceedings of the IEEE international conference on computer vision; 2015. p. 3730–8.

  60. Liu Z, Wang R, Japkowicz N, Tang D, Zhang W, Zhao J. Research on unsupervised feature learning for android malware detection based on restricted Boltzmann machines. Future Gener Comput Syst. 2021;120:91–108.

    Article  Google Scholar 

  61. Huang L, Xue J, Wang Y, Liu Z, Chen J, Kong Z. Whgdroid: effective android malware detection based on weighted heterogeneous graph. J Inf Secur Appl. 2023;77:103556.

    Google Scholar 

  62. Luh R, Janicke H, Schrittwieser S. Aidis: detecting and classifying anomalous behavior in ubiquitous kernel processes. Comput Secur. 2019;84:120–47.

    Article  Google Scholar 

  63. Luh R, Schrittwieser S, Marschalek S. Taon: an ontology-based approach to mitigating targeted attacks. In: Proceedings of the 18th international conference on information integration and web-based applications and services; 2016. p. 303–12.

  64. Mahindru A, Sangal A. Hybridroid: an empirical analysis on effective malware detection model developed using ensemble methods. J Supercomput. 2021;77:8209–51.

    Article  Google Scholar 

  65. Mahindru A, Sangal A. Semidroid: a behavioral malware detector based on unsupervised machine learning techniques using feature selection approaches. Int J Mach Learn Cybern. 2021;12:1369–411.

    Article  Google Scholar 

  66. Martín A, Menéndez HD, Camacho D. Mocdroid: multi-objective evolutionary classifier for android malware detection. Soft Comput. 2017;21:7405–15.

    Article  Google Scholar 

  67. McNeil P, Shetty S, Guntu D, Barve G. Scredent: scalable real-time anomalies detection and notification of targeted malware in mobile devices. Procedia Comput Sci. 2016;83:1219–25.

    Article  Google Scholar 

  68. Miciolino EE, Setola R, Bernieri G, Panzieri S, Pascucci F, Polycarpou MM. Fault diagnosis and network anomaly detection in water infrastructures. IEEE Des Test. 2017;34:44–51.

    Article  Google Scholar 

  69. Millar S, McLaughlin N, del Rincon JM, Miller P, Zhao Z. Dandroid: a multi-view discriminative adversarial network for obfuscated android malware detection. In: Proceedings of the tenth ACM conference on data and application security and privacy. ACM; 2020. p. 353–64.

  70. Mirjalili V, Ross A. Soft biometric privacy: retaining biometric utility of face images while perturbing gender. In: 2017 IEEE International joint conference on biometrics (IJCB). IEEE; 2017. p. 564–73.

  71. Mittal M, Siriaraya P, Lee C, Kawai Y, Yoshikawa T, Shimojo S. Accurate spatial mapping of social media data with physical locations. In: 2019 IEEE International Conference on Big Data (Big Data). IEEE; 2019. p. 4113–6.

  72. Mohammadinodooshan A, Kargén U, Shahmehri N. Comment on“androdet: an adaptive android obfuscation detector". 2019.

  73. Mujumdar A, Masiwal G, Meshram DBB. Analysis of signature-based and behavior-based anti-malware approaches. 2013.

  74. Nataraj L, Manjunath BS. Spam: signal processing to analyze malware [applications corner]. IEEE Signal Process Mag. 2016;33:105–17. https://doi.org/10.1109/MSP.2015.2507185.

    Article  ADS  Google Scholar 

  75. Nelson B, Barreno M, Chi FJ, Joseph AD, Rubinstein BI, Saini U, Sutton CA, Tygar JD, Xia K. Exploiting machine learning to subvert your spam filter. LEET. 2008;8:1–9.

    Google Scholar 

  76. Pan Y, Ge X, Fang C, Fan Y. A systematic literature review of android malware detection using static analysis. IEEE Access. 2020;8:116363–79.

    Article  Google Scholar 

  77. Pan Z, Yu W, Yi X, Khan A, Yuan F, Zheng Y. Recent progress on generative adversarial networks (GANs): a survey. IEEE Access. 2019;7:36322–33.

    Article  Google Scholar 

  78. Papernot N, McDaniel P, Swami A, Harang R. Crafting adversarial input sequences for recurrent neural networks. In: MILCOM 2016-2016 IEEE Military Communications Conference. IEEE; 2016. p. 49–54.

  79. Pasha MFK, Kc B, Somasundaram SL. An approach to detect the cyber-physical attack on water distribution system. In: World environmental and water resources congress; 2017. p. 703–11.

  80. Pattanaik PA, Mittal M, Khan MZ. Unsupervised deep learning cad scheme for the detection of malaria in blood smear microscopic images. IEEE Access. 2020;8:94936–46.

    Article  Google Scholar 

  81. Qiu J, Zhang J, Luo W, Pan L, Nepal S, Xiang Y. A survey of android malware detection with deep neural models. ACM Comput Surv (CSUR). 2020;53:1–36.

    Article  Google Scholar 

  82. Renjith G, Laudanna S, Aji S, Visaggio CA, Vinod P. Gang-mam: GAN based engine for modifying android malware. SoftwareX. 2022;18:100977.

    Article  Google Scholar 

  83. Rieck K, Trinius P, Willems C, Holz T. Automatic analysis of malware behavior using machine learning. J Comput Secur. 2011;19:639–68. https://doi.org/10.3233/JCS-2010-0410.

    Article  Google Scholar 

  84. Rozsa A, Günther M, Rudd EM, Boult TE. Are facial attributes adversarially robust? In: 2016 23rd international conference on pattern recognition (ICPR). IEEE; 2016. p. 3121–7.

  85. Rozsa A, Günther M, Rudd EM, Boult TE. Facial attributes: accuracy and adversarial robustness. Pattern Recognit Lett. 2019;124:100–8.

    Article  ADS  Google Scholar 

  86. Russel M, Rahman SSM, Islam T. A large-scale investigation to identify the pattern of app component in obfuscated android malwares. 2020. p. 513–26. https://doi.org/10.1007/978-981-15-6318-8_42.

  87. Saxe J, Berlin K. Deep neural network based malware detection using two dimensional binary program features. In: 2015 10th international conference on Malicious and Unwanted Software (MALWARE). IEEE; 2015. p. 11–20.

  88. Sayfullina L, Eirola E, Komashinsky D, Palumbo P, Miche Y, Lendasse A, Karhunen J. Efficient detection of zero-day android malware using normalized Bernoulli naive bayes. In: 2015 IEEE Trustcom/BigDataSE/ISPA. IEEE; 2015. p. 198–205.

  89. Senanayake J, Kalutarage H, Al-Kadri MO. Android mobile malware detection using machine learning: a systematic review. Electronics. 2021;10:1606.

    Article  Google Scholar 

  90. Sharif M, Bhagavatula S, Bauer L, Reiter MK. Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition. In: Proceedings of the 2016 acm sigsac conference on computer and communications security. 2016; p. 1528–40.

  91. Shen S, Furuta R, Yamasaki T, Aizawa K. Fooling neural networks in face attractiveness evaluation: adversarial examples with high attractiveness score but low subjective score. In: 2017 IEEE third international conference on Multimedia Big Data (BigMM). IEEE; 2017. p. 66–9.

  92. Shin H, Noh J, Kim D, Kim Y. The system that cried wolf: sensor security analysis of wide-area smoke detectors for critical infrastructure. ACM Trans Privacy Secur (TOPS). 2020;23:1–32.

    Article  Google Scholar 

  93. Siddiqui S, Khan TA. On test patterns for cloud applications. In: 2016 international conference on frontiers of information technology (FIT). IEEE; 2016. p. 57–62.

  94. Siddiqui S, Khan TA. Test patterns for cloud applications. IEEE Access. 2019;7:147060–80.

    Article  Google Scholar 

  95. Souri A, Hosseini R. A state-of-the-art survey of malware detection approaches using data mining techniques. HCIS. 2018;8:3.

    Google Scholar 

  96. Steinhardt J, Koh PWW, Liang PS. Certified defenses for data poisoning attacks. In: Advances in neural information processing systems; 2017. p. 3517–29.

  97. Su J, Vargas DV, Sakurai K. One pixel attack for fooling deep neural networks. IEEE Trans Evol Comput. 2019;23:828–41.

    Article  Google Scholar 

  98. Suarez-Tangil G, Dash S, Ahmadi M, Kinder J, Giacinto G, Cavallaro L. Droidsieve: fast and accurate classification of obfuscated android malware. 2017. https://doi.org/10.1145/3029806.3029825.

  99. Suarez-Tangil G, Tapiador J, Peris-Lopez P, Blasco J. Dendroid: a text mining approach to analyzing and classifying code structures in android malware families. Expert Syst Appl. 2013. https://doi.org/10.1016/j.eswa.2013.07.106.

    Article  Google Scholar 

  100. Sun T, Daoudi N, Allix K, Bissyandé TF. Android malware detection: looking beyond dalvik bytecode. In: 2021 36th IEEE/ACM international conference on automated software engineering workshops (ASEW). IEEE; 2021. p. 34–9.

  101. Taormina R, Galelli S, Tippenhauer NO, Salomons E, Ostfeld A. Characterizing cyber-physical attacks on water distribution systems. J Water Resour Plan Manag. 2017;143:04017009.

    Article  Google Scholar 

  102. Trippel T, Weisse O, Xu W, Honeyman P, Fu K. Walnut: Waging doubt on the integrity of mems accelerometers with acoustic injection attacks. In: 2017 IEEE European symposium on security and privacy (EuroS &P). IEEE; 2017. p. 3–18.

  103. Udupa S, Debray S, Madou M. Deobfuscation: reverse engineering obfuscated code. 2005. p. 10. https://doi.org/10.1109/WCRE.2005.13.

  104. Urbina DI, Giraldo JA, Tippenhauer NO, Cárdenas AA. Attacking fieldbus communications in ICS: applications to the swat testbed. In: SG-CRC; 2016. p. 75–89.

  105. Vu LN, Jung S. Admat: a cnn-on-matrix approach to android malware detection and classification. IEEE Access. 2021;9:39680–94.

    Article  Google Scholar 

  106. Wang Z, Wang K, Yang B, Li S, Pan A. Sonic gun to smart devices: your devices lose control under ultrasound/sound. Black Hat USA; 2017. p. 1–50.

  107. Wu DJ, Mao CH, Wei TE, Lee HM, Wu KP. Droidmat: android malware detection through manifest and api calls tracing. In: 2012 Seventh Asia Joint Conference on Information Security. IEEE; 2012. p. 62–9.

  108. Wu H. A systematical study for deep learning based android malware detection. In: Proceedings of the 2020 9th international conference on software and computer applications; 2020. p. 177–182.

  109. Wu Q, Zhu X, Liu B. A survey of android malware static detection technology based on machine learning. Mob Inf Syst. 2021;2021:1–18.

    CAS  Google Scholar 

  110. Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK. Android malware detection based on system call sequences and lstm. Multimed Tools Appl. 2019;78:3979–99.

    Article  Google Scholar 

  111. Xu K, Li Y, Deng RH, Chen K. Deeprefiner: multi-layer android malware detection system applying deep neural networks. In: 2018 IEEE European Symposium on Security and Privacy (EuroS &P). IEEE Computer Society; 2018. p. 473–87.

  112. Yinka-Banjo C, Ugot OA. A review of generative adversarial networks and its application in cybersecurity. Artif Intell Rev. 2020;53:1721–36.

    Article  Google Scholar 

  113. Yuan W, Jiang Y, Li H, Cai M. A lightweight on-device detection method for android malware. IEEE Trans Syst Man Cybern Syst. 2021;51:5600–11. https://doi.org/10.1109/TSMC.2019.2958382.

    Article  Google Scholar 

  114. Yuan X, He P, Zhu Q, Li X. Adversarial examples: attacks and defenses for deep learning. IEEE Trans Neural Netw Learn Syst. 2019;30:2805–24.

    Article  MathSciNet  PubMed  Google Scholar 

  115. Zhang G, Yan C, Ji X, Zhang T, Zhang T, Xu W. Dolphinattack: inaudible voice commands. In: Proceedings of the 2017 ACM SIGSAC conference on computer and communications security; 2017. p. 103–17.

  116. Zhang M, Duan Y, Yin H, Zhao Z. Semantics-aware android malware classification using weighted contextual api dependency graphs. In: Proceedings of the ACM conference on computer and communications security; 2014. p. 1105–16. https://doi.org/10.1145/2660267.2660359.

  117. Zhang X, Breitinger F, Luechinger E, O’Shaughnessy S. Android application forensics: a survey of obfuscation, obfuscation detection and deobfuscation techniques and their impact on investigations. Forensic Sci Int Digit Investig. 2021;39:301285.

    Article  Google Scholar 

  118. Zhang Y, Yang Y, Wang X. A novel android malware detection approach based on convolutional neural network. In: Proceedings of the 2nd international conference on cryptography, security and privacy; 2018. p. 144–9.

  119. Zhou Y, Jiang X. Dissecting android malware: characterization and evolution. In: 2012 IEEE symposium on security and privacy. IEEE; 2012. p. 95–109.

  120. Zhou Y, Jiang X. Dissecting android malware: characterization and evolution. In: 2012 IEEE Symposium on Security and Privacy; 2012. p. 95–109. https://doi.org/10.1109/SP.2012.16.

  121. Zhu Z, Dumitraş T. Featuresmith: automatically engineering features for malware detection by mining the security literature. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security; 2016. p. 767–78.

Download references

Funding

No funding is received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamim Ahmed Khan.

Ethics declarations

Conflict of interest

There is no potential conflict of interest.

Human and animal rights

Research does not involve any human participants and/or animals.

Informed consent

There was no requirement for informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, S., Khan, T.A. An Overview of Techniques for Obfuscated Android Malware Detection. SN COMPUT. SCI. 5, 328 (2024). https://doi.org/10.1007/s42979-024-02637-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02637-3

Keywords

Navigation