Skip to main content
Log in

Affirmative and Negative Sentence Detection in the Brain Using SVM-RFE and Rotation Forest: An fMRI Study

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Studies on the brain’s response to positive and negative stimuli using non-invasive techniques such as fMRI and PET scans have been widely researched. The use of fMRI in particular, to study sentence polarity detection in the brain, has become a captivating field. This paper analyzed fMRI data of affirmative and negative sentence processing and developed a model using a correlation-based subset evaluator and NBTree classification to classify sentence polarity with an average accuracy of 92.9%. Further, the accuracy of the result is enhanced up to 100% using SVM-RFE and Rotation Forest. Our analysis of selected voxel sets in the brain showed that the calcarine sulcus and right and left dorsolateral prefrontal cortices play a significant role in determining sentence polarity, while areas such as the right posterior pre-central sulcus, right supramarginal gyrus, and right frontal eye fields have a limited contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Thedataset analysed during the current study are available in the public repository, and the link for the same is: http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/.

References

  1. Pandey P, Jha BK, Sinha N. Analyzing cognitive states using fMRI data. Procedia Comp Sci. 2016;90:35–41.

    Article  Google Scholar 

  2. Sair HI, Agarwal S, Pillai JJ. Application of resting state functional MR imaging to presurgical mapping: language mapping. Neuroimag Clin. 2017;27(4):635–44.

    Article  Google Scholar 

  3. Kaan E, Swaab TY. The brain circuitry of syntactic comprehension. Trends Cogn Sci. 2002;6(8):350–6. https://doi.org/10.1016/s1364-6613(02)01947-2.

    Article  Google Scholar 

  4. Fiveash A, Thompson WF, Badcock NA, McArthur G. Syntactic processing in music and language: effects of interrupting auditory streams with alternating timbres. Int J Psychophysiol. 2018;129:31–40.

    Article  Google Scholar 

  5. Yang Y, Wang J, Bailer C, Cherkassky V, Just MA. Commonality of neural representations of sentences across languages: predicting brain activation during Portuguese sentence comprehension using an English-based model of brain function. Neuroimage. 2017;146:658–66.

    Article  Google Scholar 

  6. Feng S, Qi R, Yang J, Yu A, Yang Y. Neural correlates for nouns and verbs in phrases during syntactic and semantic processing: an fMRI study. J Neurolin. 2020;53: 100860.

    Article  Google Scholar 

  7. Meyer L, Friederici AD. Neural systems underlying the processing of complex sentences. In: Neurobiology of language. Academic Press; 2016. p. 597–606.

    Chapter  Google Scholar 

  8. Rogalsky C. The role of the anterior temporal lobe in sentence processing. In: Neurobiology of Language. Academic Press; 2016. p. 587–95.

    Chapter  Google Scholar 

  9. Yokoyama S, Maki H, Hashimoto Y, Toma M, Kawashima R. Mechanism of case processing in the brain: an fMRI study. PLoS ONE. 2012;7(7):e40474. https://doi.org/10.1371/journal.pone.0040474.

    Article  Google Scholar 

  10. Haegeman L. The syntax of negation. Cambridge: Cambridge Univerisity Press; 1995.

    Book  Google Scholar 

  11. Mayo R, Schul Y, Burnstein E. “I am not guilty” vs “I am innocent”: Successful negation may depend on the schema used for its encoding. J Exp Soc Psychol. 2004;40(4):433–49.

    Article  Google Scholar 

  12. Zwaan, R. A. (2012). The experiential view of language comprehension: How is negation represented. Higher level language processes in the brain: Inference and comprehension processes, 255

  13. Carpenter PA, Just MA, Keller TA, Eddy WF, Thulborn KR. Time course of fMRI-activation in language and spatial networks during sentence comprehension. Neuroimage. 1999;10(2):216–24.

    Article  Google Scholar 

  14. Hasegawa M, Carpenter PA, Just MA. An fMRI study of bilingual sentence comprehension and workload. Neuroimage. 2002;15(3):647–60.

    Article  Google Scholar 

  15. Tettamanti M, Manenti R, Della Rosa PA, Falini A, Perani D, Cappa SF, Moro A. Negation in the brain: modulating action representations. Neuroimage. 2008;43(2):358–67.

    Article  Google Scholar 

  16. Christensen KR. Negative and affirmative sentences increase activation in different areas in the brain. J Neurol. 2009;22(1):1–17.

    MathSciNet  Google Scholar 

  17. Bahlmann J, Mueller JL, Makuuchi M, Friederici AD. Perisylvian functional connectivity during processing of sentential negation. Front Psychol. 2011;2:104.

    Article  Google Scholar 

  18. Kumar U, Padakannaya P, Mishra RK, Khetrapal CL. Distinctive neural signatures for negative sentences in Hindi: an fMRI study. Brain Imaging Behav. 2013;7(2):91–101.

    Article  Google Scholar 

  19. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/. Accessed 31 Dec 2022

  20. Gupta KO, Chatur PN. Gradient self-weighting linear collaborative discriminant regression classification for human cognitive states classification. Mach Vis Appl. 2020;31:1–16.

    Article  Google Scholar 

  21. Wen Z, Yu T, Yu Z, Li Y. Grouped sparse Bayesian learning for voxel selection in multivoxel pattern analysis of fMRI data. Neuroimage. 2019;184:417–30.

    Article  Google Scholar 

  22. Kasabov NK. Deep Learning and Deep Knowledge Representation of fMRI Data. In: Time-Space Spiking Neural Networks and Brain-Inspired Artificial Intelligence. Berlin, Heidelberg: Springer; 2019. p. 361–95.

    Chapter  Google Scholar 

  23. Wang, X., & Mitchell, T. (2002). Detecting cognitive states using machine learning. Iterim working paperWhiteld ML, Sherlock G, Saldanha A, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein.

  24. Eddy W, Fitzgerald M, Genovese C, Lazar N, Mockus A, Welling J. The Challenge of functional magnetic resonance imaging. J Comput Graph Stat. 1999;8(3):545–58. https://doi.org/10.2307/1390875.

    Article  Google Scholar 

  25. Hall, M. A. (1998) Correlation-based feature subset selection for machine learning. Thesis submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy at the University of Waikato

  26. Tsamardinos I, Borboudakis G, Katsogridakis P, Pratikakis P, Christophides V. A greedy feature selection algorithm for Big Data of high dimensionality. Mach Learn. 2019;108(2):149–202.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kohavi R. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In Kdd. 1996;96:202–7.

    Google Scholar 

  28. Rodriguez JJ, Kuncheva LI, Alonso CJ. Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell. 2006;28(10):1619–30.

    Article  Google Scholar 

  29. Shieh MD, Yang CC. Multiclass SVM-RFE for product form feature selection. Expert Syst Appl. 2008;35(1–2):531–41.

    Article  Google Scholar 

  30. Behroozi M, Daliri MR. RDLPFC area of the brain encodes sentence polarity: a study using fMRI. Brain Imaging Behav. 2015;9(2):178–89.

    Article  Google Scholar 

  31. Kasabov NK. NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 2014;52:62–76.

    Article  Google Scholar 

  32. Doborjeh, M. G., Capecci, E., & Kasabov, N. (2014, December). Classification and segmentation of fMRI spatio-temporal brain data with a NeuCube evolving spiking neural network model. In 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS) (pp. 73–80). IEEE.

  33. Ranjan, A., Singh, A. K., Thakur, A. K., Mishra, R. B., & Singh, V. P. (2021). Sentential Negation Identification of FMRI Data Using k-NN. In: Machine Intelligence and Smart Systems: Proceedings of MISS 2020 (pp. 657–664). Springer Singapore

  34. Ranjan A, Singh VP, Singh AK, Thakur AK, Mishra RB. Classifying brain state in sentence polarity exposure: An ANN model for fMRI data. RIA. 2020. https://doi.org/10.18280/ria.340315.

    Article  Google Scholar 

  35. Ranjan A, Singh VP, Mishra RB, Thakur AK, Singh AK. Sentence polarity detection using stepwise greedy correlation based feature selection and random forests: an fMRI study. Journal of Neurolinguistics. 2021;59:100985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibhav Prakash Singh.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Machine Intelligence and Smart Systems guest” edited by Manish Gupta and Shikha Agrawal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, A., Singh, V.P. Affirmative and Negative Sentence Detection in the Brain Using SVM-RFE and Rotation Forest: An fMRI Study. SN COMPUT. SCI. 4, 332 (2023). https://doi.org/10.1007/s42979-023-01786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-01786-1

Keywords

Navigation