Skip to main content
Log in

A Review of Deep Learning Techniques for Glaucoma Detection

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Glaucoma is one of the major reasons for visual impairment all across the globe. The recent advancements in machine learning techniques have greatly facilitated ophthalmologists in the early diagnosis of ocular diseases through the employment of automated systems. Several studies have been published lately to address the timely detection of glaucoma using deep learning approaches. A comprehensive review of the deep learning approaches employed for glaucoma detection using retinal fundus images is presented in this paper. The available retinal image datasets, image pre-processing techniques, state-of-the-art models, and performance evaluation metrics used in the recent studies are reviewed. This systematic review aims to provide critical insights and potential research directions to the ophthalmologists and researchers in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sarki R, Ahmed K, Wang H, Zhang Y. Automatic detection of diabetic eye disease through deep learning using fundus images: a survey. IEEE Access. 2020;8:151133–49.

    Google Scholar 

  2. Khalil T, Khalid S, Syed AM. Review of machine learning techniques for glaucoma detection and prediction. In: 2014 science and information conference. 2014; IEEE. p. 438–442.

  3. Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–90.

    Google Scholar 

  4. Barros DM, Moura JC, Freire CR, Taleb AC, Valentim RA, Morais PS. Machine learning applied to retinal image processing for glaucoma detection: review and perspective. Biomed Eng Online. 2020;19:1–21.

    Google Scholar 

  5. Divya L, Jacob J. Performance analysis of glaucoma detection approaches from fundus images. Proc Comput Sci. 2018;143:544–51.

    Google Scholar 

  6. Zangalli C, Gupta SR, Spaeth GL. The disc as the basis of treatment for glaucoma. Saudi J Ophthalmol. 2011;25(4):381–7.

    Google Scholar 

  7. Thompson AC, Jammal AA, Medeiros FA. A review of deep learning for screening, diagnosis, and detection of glaucoma progression. Transl Vis Sci Technol. 2020;9(2):42–42.

    Google Scholar 

  8. Asaoka R, Murata H, Hirasawa K, Fujino Y, Matsuura M, Miki A, Kanamoto T, Ikeda Y, Mori K, Iwase A, et al. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images. Am J Ophthalmol. 2019;198:136–45.

    Google Scholar 

  9. Shibata N, Tanito M, Mitsuhashi K, Fujino Y, Matsuura M, Murata H, Asaoka R. Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Sci Rep. 2018;8(1):1–9.

    Google Scholar 

  10. Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology. 2018;125(8):1199–206.

    Google Scholar 

  11. Asaoka R, Murata H, Iwase A, Araie M. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology. 2016;123(9):1974–80.

    Google Scholar 

  12. Tong Y, Lu W, Yu Y, Shen Y. Application of machine learning in ophthalmic imaging modalities. Eye Vis. 2020;7:1–15.

    Google Scholar 

  13. Sengupta S, Singh A, Leopold HA, Gulati T, Lakshminarayanan V. Ophthalmic diagnosis using deep learning with fundus images—a critical review. Artif Intell Med. 2020;102: 101758.

    Google Scholar 

  14. Janani R, Rajamohana SP. Early detection of glaucoma using optic disc and optic cup segmentation: a survey. Mater Today Proc. 2021;45:2763–9.

    Google Scholar 

  15. An G, Omodaka K, Hashimoto K, Tsuda S, Shiga Y, Takada N, Kikawa T, Yokota H, Akiba M, Nakazawa T. Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images. J Healthc Eng. 2019;2019:1–9.

    Google Scholar 

  16. Asaoka R, Tanito M, Shibata N, Mitsuhashi K, Nakahara K, Fujino Y, Matsuura M, Murata H, Tokumo K, Kiuchi Y. Validation of a deep learning model to screen for glaucoma using images from different fundus cameras and data augmentation. Ophthalmol Glaucoma. 2019;2(4):224–31.

    Google Scholar 

  17. Phan S, Satoh S, Yoda Y, Kashiwagi K, Oshika T. Evaluation of deep convolutional neural networks for glaucoma detection. Jpn J Ophthalmol. 2019;63(3):276–83.

    Google Scholar 

  18. Al Ghamdi M, Li M, Abdel-Mottaleb M, Abou Shousha M. Semi-supervised transfer learning for convolutional neural networks for glaucoma detection. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3812–3816 (2019). IEEE

  19. Diaz-Pinto A, Morales S, Naranjo V, Köhler T, Mossi JM, Navea A. Cnns for automatic glaucoma assessment using fundus images: an extensive validation. Biomed Eng Online. 2019;18(1):1–19.

    Google Scholar 

  20. Cerentinia A, Welfera D, d’Ornellasa MC, Haygertb CJP, Dottob GN. Automatic identification of glaucoma sing deep learning methods. In: Proc. 16th World Congr. Med. Health Informat. Precision Healthcare Through Informat.(MEDINFO), vol. 245. 2018. p. 318.

  21. Orlando JI, Prokofyeva E, del Fresno M, Blaschko MB. Convolutional neural network transfer for automated glaucoma identification. In: 12th international symposium on medical information processing and analysis, vol. 10160. International Society for Optics and Photonics; 2017. p. 101600.

  22. de Moura Lima AC, Maia LB, Pereira RMP, Junior GB, de Almeida JDS, de Paiva AC. Glaucoma diagnosis over eye fundus image through deep features. In: 2018 25th international conference on systems, signals and image processing (IWSSIP). IEEE; 2018. p. 1–4.

  23. Li F, Wang Z, Qu G, Song D, Yuan Y, Xu Y, Gao K, Luo G, Xiao Z, Lam DS, et al. Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network. BMC Med Imaging. 2018;18(1):1–7.

    Google Scholar 

  24. Gómez-Valverde JJ, Antón A, Fatti G, Liefers B, Herranz A, Santos A, Sánchez CI, Ledesma-Carbayo MJ. Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed Opt Express. 2019;10(2):892–913.

    Google Scholar 

  25. Serener A, Serte S. Transfer learning for early and advanced glaucoma detection with convolutional neural networks. In: 2019 medical technologies congress (TIPTEKNO). IEEE; 2019. p. 1–4.

  26. Borwankar S, Sen R, Kakani B. Improved glaucoma diagnosis using deep learning. In: 2020 IEEE international conference on electronics, computing and communication technologies (CONECCT). IEEE; 2020. p. 1–4.

  27. Elakkiya B, Saraniya O. A comparative analysis of pretrained and transfer-learning model for automatic diagnosis of glaucoma. In: 2019 11th international conference on advanced computing (ICoAC). IEEE; 2019. p. 167–172.

  28. Kim M, Park H, Zuallaert J, Janssens O, Hoecke SV, Neve WD. Computer-aided diagnosis and localization of glaucoma using deep learning. In: 2018 IEEE international conference on bioinformatics and biomedicine (BIBM). 2018. p. 2357–2362. https://doi.org/10.1109/BIBM.2018.8621168

  29. Joshi RC, Dutta MK, Sikora P, Kiac M. Efficient convolutional neural network based optic disc analysis using digital fundus images. In: 2020 43rd international conference on telecommunications and signal processing (TSP). IEEE; 2020. p. 533–536.

  30. Gour N, Khanna P. Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network. Biomed Signal Process Control 102329 (2020)

  31. Ovreiu S, Cristescu I, Balta F, Sultana A, Ovreiu E. Early detection of glaucoma using residual networks. In: 2020 13th international conference on communications (COMM). IEEE; 2020. p. 161–164.

  32. Yu S, Xiao D, Frost S, Kanagasingam Y. Robust optic disc and cup segmentation with deep learning for glaucoma detection. Comput Med Imaging Graph. 2019;74:61–71.

    Google Scholar 

  33. Kim J, Tran L, Chew E.Y, Antani S. Optic disc and cup segmentation for glaucoma characterization using deep learning. In: 2019 IEEE 32nd international symposium on computer-based medical systems (CBMS). IEEE; 2019. p. 489–494.

  34. Serte S, Serener A. A generalized deep learning model for glaucoma detection. In: 2019 3rd international symposium on multidisciplinary studies and innovative technologies (ISMSIT). IEEE; 2019. p. 1–5.

  35. Wang J, Yan Y, Xu Y, Zhao W, Min H, Tan M, Liu J. Conditional adversarial transfer for glaucoma diagnosis. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE; 2019. p. 2032–2035.

  36. Claro M, Veras R, Santana A, Araujo F, Silva R, Almeida J, Leite D. An hybrid feature space from texture information and transfer learning for glaucoma classification. J Vis Commun Image Represent. 2019;64: 102597.

    Google Scholar 

  37. Norouzifard M, Nemati A, GholamHosseini H, Klette R, Nouri-Mahdavi K, Yousefi S. Automated glaucoma diagnosis using deep and transfer learning: proposal of a system for clinical testing. In: 2018 international conference on image and vision computing New Zealand (IVCNZ). IEEE; 2018. p. 1–6.

  38. Ahn JM, Kim S, Ahn K-S, Cho S-H, Lee KB, Kim US. A deep learning model for the detection of both advanced and early glaucoma using fundus photography. PLoS One. 2018;13(11):0207982.

    Google Scholar 

  39. Phankokkruad M. Evaluation of deep transfer learning models in glaucoma detection for clinical application. In: 2021 4th international conference on information and communications technology (ICOIACT). 2021. p. 114–118. https://doi.org/10.1109/ICOIACT53268.2021.9563969

  40. Xu X, Guan Y, Li J. Automatic glaucoma detection based on transfer induced attention network. Biomed Eng Online. 2021;20:39. https://doi.org/10.1186/s12938-021-00877-5.

    Article  Google Scholar 

  41. Chayan T, Srabonti A, Rahman E, Reza MT, Apon S, Alam MGR. Explainable AI based glaucoma detection using transfer learning and lime. 2022. https://doi.org/10.48550/arXiv.2210.03332

  42. Chen X, Xu Y, Wong DWK, Wong TY, Liu J. Glaucoma detection based on deep convolutional neural network. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE; 2015. p. 715–718.

  43. Raghavendra U, Fujita H, Bhandary SV, Gudigar A, Tan JH, Acharya UR. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf Sci. 2018;441:41–9.

    MathSciNet  Google Scholar 

  44. Pal A, Moorthy MR, Shahina A. G-eyenet: a convolutional autoencoding classifier framework for the detection of glaucoma from retinal fundus images. In: 2018 25th IEEE international conference on image processing (ICIP). IEEE; 2018. p. 2775–2779.

  45. Juneja M, Singh S, Agarwal N, Bali S, Gupta S, Thakur N, Jindal P. Automated detection of glaucoma using deep learning convolution network (g-net). Multimed Tools Appl 1–23 (2019)

  46. Karkuzhali S, Mishra A, Ajay M, Prakash SW. Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models. In: 2020 international conference on computer communication and informatics (ICCCI). IEEE; 2020. p. 1–9.

  47. Islam MT, Imran SA, Arefeen A, Hasan M, Shahnaz C. Source and camera independent ophthalmic disease recognition from fundus image using neural network. In: 2019 IEEE international conference on signal processing, information, communication & systems (SPICSCON). IEEE; 2019. p. 59–63.

  48. Saxena A, Vyas A, Parashar L, Singh U. A glaucoma detection using convolutional neural network. In: 2020 international conference on electronics and sustainable communication systems (ICESC). IEEE; 2020. p. 815–820.

  49. Huang G-R, Hsiang T-R. A simplified deep network architecture on optic cup and disc segmentation. In: 2020 international joint conference on neural networks (IJCNN). IEEE; 2020. p. 1–7.

  50. Mojab N, Noroozi V, Philip SY, Hallak JA. Deep multi-task learning for interpretable glaucoma detection. In: 2019 IEEE 20th international conference on information reuse and integration for data science (IRI). IEEE; 2019. p. 167–174.

  51. Phasuk S, Poopresert P, Yaemsuk A, Suvannachart P, Itthipanichpong R, Chansangpetch S, Manassakorn A, Tantisevi V, Rojanapongpun P, Tantibundhit C. Automated glaucoma screening from retinal fundus image using deep learning. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE. 2019. p. 904–907.

  52. Zilly J, Buhmann JM, Mahapatra D. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph. 2017;55:28–41.

    Google Scholar 

  53. Raja PS, Ramanan K. Damped least-squares recurrent deep neural learning classification for glaucoma detection. In: 2019 international conference on data science and engineering (ICDSE). IEEE; 2019. p. 160–165.

  54. dos Santos PRS, de Carvalho Brito V, de Carvalho Filho AO, de Araújo FHD, Rabêlo RAL, Mathew MJ. A capsule network-based for identification of glaucoma in retinal images. In: 2020 IEEE symposium on computers and communications (ISCC). IEEE; 2020. p. 1–6.

  55. Bajwa MN, Malik MI, Siddiqui SA, Dengel A, Shafait F, Neumeier W, Ahmed S. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC Med Inform Decis Mak. 2019;19(1):1–16.

    Google Scholar 

  56. Sharma A, Aggarwal M, Roy SD, Gupta V. Automatic glaucoma diagnosis in digital fundus images using convolutional neural network. In: 2019 5th international conference on signal processing, computing and control (ISPCC). IEEE; 2019. p. 160–165.

  57. Shah S, Kasukurthi N, Pande H. Dynamic region proposal networks for semantic segmentation in automated glaucoma screening. In: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019). IEEE; 2019. p. 578–582.

  58. Ovreiu S, Paraschiv E-A, Ovreiu E. Deep learning amp; digital fundus images: glaucoma detection using densenet. In: 2021 13th international conference on electronics, computers and artificial intelligence (ECAI). 2021. p. 1–4. https://doi.org/10.1109/ECAI52376.2021.9515188.

  59. M R, R L. Combined diagnosis of diabetic retinopathy and glaucoma using non-linear features. in: 2021 5th international Conference on Computer, Communication and Signal Processing (ICCCSP). 2021. p. 1–6. https://doi.org/10.1109/ICCCSP52374.2021.9465505.

  60. Afroze T, Akther S, Chowdhury MA, Hossain E, Hossain MS, Andersson K. Glaucoma Detection using inception convolutional neural network V3. Appl Intell Inform. 2021. https://doi.org/10.1007/978-3-030-82269-9.

    Article  Google Scholar 

  61. Joshi S, Partibane B, Hatamleh W, Tarazi H, Yadav C, Krah D. Glaucoma detection using image processing and supervised learning for classification. J Healthc Eng. 2022;2022:1–12. https://doi.org/10.1155/2022/2988262.

    Article  Google Scholar 

  62. Nawaz M, Nazir T, Javed A, Tariq U, Yong H-S, Khan M, Cha J. An efficient deep learning approach to automatic glaucoma detection using optic disc and optic cup localization. Sensors. 2022. https://doi.org/10.3390/s22020434.

    Article  Google Scholar 

  63. Bragança C, Torres J, Soares C, Macedo L. Detection of glaucoma on fundus images using deep learning on a new image set obtained with a smartphone and handheld ophthalmoscope. Healthcare. 2022;10:2345. https://doi.org/10.3390/healthcare10122345.

    Article  Google Scholar 

  64. Al-Bander B, Al-Nuaimy W, Al-Taee MA, Zheng Y. Automated glaucoma diagnosis using deep learning approach. In: 2017 14th international multi-conference on systems, signals & devices (SSD). IEEE; 2017. p. 207–210.

  65. Pandey A, Patre P, Minj J. Detection of glaucoma disease using image processing, soft computing and deep learning approaches. In: 2020 fourth international conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). IEEE; 2020. p. 1–7.

  66. Chakrabarty N, Chatterjee S. A novel approach to glaucoma screening using computer vision. In: 2019 international conference on smart systems and inventive technology (ICSSIT). IEEE; 2019. p. 881–884.

  67. Li A, Cheng J, Wong DWK, Liu J. Integrating holistic and local deep features for glaucoma classification. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE; 2016. p. 1328–1331.

  68. Touahri R, Azizi N, Benzebouchi NE, Hammami NE, Moumene O. A comparative study of convolutional neural network and twin svm for automatic glaucoma diagnosis. In: 2018 international conference on signal, image, vision and their applications (SIVA). IEEE; 2018. p. 1–5.

  69. Gour N, Khanna P. Automated glaucoma detection using gist and pyramid histogram of oriented gradients (phog) descriptors. Pattern Recognit Lett. 2020;137:3–11.

    Google Scholar 

  70. Abbas Q. Glaucoma-deep: detection of glaucoma eye disease on retinal fundus images using deep learning. Int J Adv Comput Sci Appl. 2017;8(6):41–5.

    Google Scholar 

  71. Diaz-Pinto A, Colomer A, Naranjo V, Morales S, Xu Y, Frangi AF. Retinal image synthesis and semi-supervised learning for glaucoma assessment. IEEE Trans Med Imaging. 2019;38(9):2211–8.

    Google Scholar 

  72. Thakur N, Juneja M. Classification of glaucoma using hybrid features with machine learning approaches. Biomed Signal Process Control. 2020;62: 102137.

    Google Scholar 

  73. Bisneto TRV, de Carvalho Filho AO, Magalhães DMV. Generative adversarial network and texture features applied to automatic glaucoma detection. Appl Soft Comput 2020;90:106165.

  74. Chaudhary PK, Pachori RB. Automatic diagnosis of glaucoma using two-dimensional Fourier-Bessel series expansion based empirical wavelet transform. Biomed Signal Process Control. 2021;64: 102237.

    Google Scholar 

  75. Mariottoni EB, Jammal AA, Urata CN, Berchuck SI, Thompson AC, Estrela T, Medeiros FA. Quantification of retinal nerve fibre layer thickness on optical coherence tomography with a deep learning segmentation-free approach. Sci Rep. 2020;10(1):1–9.

    Google Scholar 

  76. Thompson AC, Jammal AA, Berchuck SI, Mariottoni EB, Medeiros FA. Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans. JAMA Ophthalmol. 2020;138(4):333–9.

    Google Scholar 

  77. Maetschke S, Antony B, Ishikawa H, Wollstein G, Schuman J, Garnavi R. A feature agnostic approach for glaucoma detection in oct volumes. PLoS One. 2019;14(7):0219126.

    Google Scholar 

  78. Devalla SK, Chin KS, Mari J-M, Tun TA, Strouthidis NG, Aung T, Thiéry AH, Girard MJ. A deep learning approach to digitally stain optical coherence tomography images of the optic nerve head. Investig Ophthalmol Visual Sci. 2018;59(1):63–74.

    Google Scholar 

  79. Muhammad H, Fuchs TJ, De Cuir N, De Moraes CG, Blumberg DM, Liebmann JM, Ritch R, Hood DC. Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects. J Glaucoma. 2017;26(12):1086.

    Google Scholar 

  80. Xu BY, Chiang M, Chaudhary S, Kulkarni S, Pardeshi AA, Varma R. Deep learning classifiers for automated detection of gonioscopic angle closure based on anterior segment oct images. Am J Ophthalmol. 2019;208:273–80.

    Google Scholar 

  81. Fu H, Baskaran M, Xu Y, Lin S, Wong DWK, Liu J, Tun TA, Mahesh M, Perera SA, Aung T. A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images. Am J Ophthalmol. 2019;203:37–45.

    Google Scholar 

  82. Sivaswamy J, Krishnadas S, Joshi GD, Jain M, Tabish AUS. Drishti-gs: retinal image dataset for optic nerve head (onh) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE. 2014. p. 53–56.

  83. Fumero F, Alayón S, Sanchez JL, Sigut J, Gonzalez-Hernandez M. Rim-one: an open retinal image database for optic nerve evaluation. In: 2011 24th international symposium on computer-based medical systems (CBMS). IEEE; 2011. p. 1–6.

  84. Odstrcilik J. Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Proc. 2013;7(4):373–83. https://doi.org/10.1049/iet-ipr.2012.0455.

    Article  MathSciNet  Google Scholar 

  85. Sivaswamy J, Krishnadas SR, Chakravarty A, Joshi GD. A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed Imaging Data Papers. 2015;2(1):1–7.

    Google Scholar 

  86. Sivaswamy J, Krishnadas SR, Datt Joshi G, Jain M, Syed Tabish AU. Drishti-gs: retinal image dataset for optic nerve head(onh) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). 2014. p. 53–56. https://doi.org/10.1109/ISBI.2014.6867807.

  87. Zhang Z, Yin FS, Liu J, Wong WK, Tan NM, Lee BH, Cheng J, Wong TY. Origa¡sup¿-light¡/sup¿: an online retinal fundus image database for glaucoma analysis and research. In: 2010 annual international conference of the IEEE engineering in medicine and biology. 2010. p. 3065–3068. https://doi.org/10.1109/IEMBS.2010.5626137.

  88. Chen X, Xu Y, Kee Wong DW, Wong TY, Liu J. Glaucoma detection based on deep convolutional neural network. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). 2015. p. 715–718. https://doi.org/10.1109/EMBC.2015.7318462.

  89. Diaz-Pinto A, Morales S, Naranjo V, Köhler T, Mossi JM, Navea A. Cnns for automatic glaucoma assessment using fundus images: an extensive validation. Biomed Eng Online. 2019;18(1):29. https://doi.org/10.1186/s12938-019-0649-y.

    Article  Google Scholar 

  90. Fumero F, Sigut J, Alayón S, González-Hernández M, Rosa M. Interactive tool and database for optic disc and cup segmentation of stereo and monocular retinal fundus images. 2015. p. 91–97.

  91. Carmona EJ, Rincón M, Garcí a-Feijoó J, Martínez-de-la-Casa JM. Identification of the optic nerve head with genetic algorithms. Artif Intell Med. 2008;43(3):243–259. https://doi.org/10.1016/j.artmed.2008.04.005.

  92. High-Resolution Fundus (HRF) Image Database. https://www5.cs.fau.de/research/data/fundus-images/. Accessed October 2021.

  93. Fu H, Li F, Orlando JI, Bogunović H, Sun X, Liao J, Xu Y, Zhang S, Zhang X. REFUGE: retinal fundus glaucoma challenge. IEEE Dataport (2019). https://doi.org/10.21227/tz6e-r977.

  94. ODIR: Ocular Disease Intelligent Recognition ODIR-5K. https://odir2019.grand-challenge.org/. Accessed March 2021.

  95. Almazroa A, Alodhayb S, Osman E, Ramadan E, Hummadi M, Dlaim M, Alkatee M, Raahemifar K, Lakshminarayanan V. Retinal fundus images for glaucoma analysis: the RIGA dataset. In: Zhang J, Chen P-H , editors. Medical imaging 2018: imaging informatics for healthcare, research, and applications, vol. 10579. International Society for Optics and Photonics, SPIE; 2018. p. 55–62. https://doi.org/10.1117/12.2293584.

  96. Mojab N. I-oda, real-world multi-modal longitudinal data for ophthalmic applications. In: Proceedings of the 14th international joint conference on biomedical engineering systems and technologies, online streaming. 2021. p. 566–574. https://doi.org/10.5220/0010311405660574.

  97. Li L, Xu M, Liu H, Li Y, Wang X, Jiang L, Wang Z, Fan X, Wang N. A large-scale database and a cnn model for attention-based glaucoma detection. IEEE Trans Med Imaging. 2020;39(2):413–24. https://doi.org/10.1109/TMI.2019.2927226.

    Article  Google Scholar 

  98. (JSIEC), J.S.I.E.C.: 1000 Fundus images with 39 categories. https://odir2019.grand-challenge.org/. Accessed March 2021.

  99. Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye. Nature. 1999;397(6719):520–2.

    Google Scholar 

  100. Rasta SH, Partovi ME, Seyedarabi H, Javadzadeh A. A comparative study on preprocessing techniques in diabetic retinopathy retinal images: illumination correction and contrast enhancement. J Med Signals Sensors. 2015;5(1):40.

    Google Scholar 

  101. Wong SC, Gatt A, Stamatescu V, McDonnell MD. Understanding data augmentation for classification: when to warp? In: 2016 international conference on digital image computing: techniques and applications (DICTA). IEEE; 2016. p. 1–6.

  102. Kausu T, Gopi VP, Wahid KA, Doma W, Niwas SI. Combination of clinical and multiresolution features for glaucoma detection and its classification using fundus images. Biocybern Biomed Eng. 2018;38(2):329–41.

    Google Scholar 

  103. Bechar MEA, Settouti N, Barra V, Chikh MA. Semi-supervised superpixel classification for medical images segmentation: application to detection of glaucoma disease. Multidimens Syst Signal Process. 2018;29(3):979–98.

    MathSciNet  MATH  Google Scholar 

  104. Tatham AJ, Medeiros FA. Detecting structural progression in glaucoma with optical coherence tomography. Ophthalmology. 2017;124(12):57–65.

    Google Scholar 

  105. Dong ZM, Wollstein G, Schuman JS. Clinical utility of optical coherence tomography in glaucoma. Investig Ophthalmol Visual Sci. 2016;57(9):556–67.

    Google Scholar 

  106. Miki A, Kumoi M, Usui S, Endo T, Kawashima R, Morimoto T, Matsushita K, Fujikado T, Nishida K. Prevalence and associated factors of segmentation errors in the peripapillary retinal nerve fiber layer and macular ganglion cell complex in spectral-domain optical coherence tomography images. J Glaucoma. 2017;26(11):995–1000.

    Google Scholar 

  107. Mansberger SL, Menda SA, Fortune BA, Gardiner SK, Demirel S. Automated segmentation errors when using optical coherence tomography to measure retinal nerve fiber layer thickness in glaucoma. Am J Ophthalmol. 2017;174:1–8.

    Google Scholar 

  108. Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Inf Process Manag. 2009;45(4):427–37.

    Google Scholar 

  109. Zheng H, Wang R, Yu Z, Wang N, Gu Z, Zheng B. Automatic plankton image classification combining multiple view features via multiple kernel learning. BMC Bioinform. 2017;18(16):1–18.

    Google Scholar 

  110. Tang N, Zhou F, Gu Z, Zheng H, Yu Z, Zheng B. Unsupervised pixel-wise classification for chaetoceros image segmentation. Neurocomputing. 2018;318:261–70.

    Google Scholar 

  111. Hongyi Zhang MC, Yann N, Dauphin DL-P. Mixup: beyond empirical risk minimization. 2017. arxiv.org/abs/1710.09412.

  112. Sangdoo Yun DH, Seong Joon Oh SC, Junsuk Choe YY. Cutmix: regularization strategy to train strong classifiers with localizable features. In: 2019 IEEE/CVF international conference on computer vision (ICCV). 2019. p. 6022–6031. https://doi.org/10.1109/ICCV.2019.00612.

  113. Chen H, Cao P. Deep learning based data augmentation and classification for limited medical data learning. In: 2019 IEEE international conference on power, intelligent computing and systems (ICPICS). IEEE; 2019. p. 300–303.

  114. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 1–9.

  115. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv:1409.1556.

  116. Ouyang W, Luo P, Zeng X, Qiu S, Tian Y, Li H, Yang S, Wang Z, Xiong Y, Qian C, et al. Deepid-net: multi-stage and deformable deep convolutional neural networks for object detection. 2014. arXiv:1409.3505.

  117. Kuziemsky C, Maeder AJ, John O, Gogia SB, Basu A, Meher S, Ito M. Role of artificial intelligence within the telehealth domain: official 2019 yearbook contribution by the members of imia telehealth working group. Yearb Med Inform. 2019;28(1):35.

    Google Scholar 

Download references

Funding

This work was enabled in part by support provided by the New Brunswick Health Research Foundation (NBHRF), and the New Brunswick Innovation Foundation (NBIF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takfarines Guergueb.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guergueb, T., Akhloufi, M.A. A Review of Deep Learning Techniques for Glaucoma Detection. SN COMPUT. SCI. 4, 274 (2023). https://doi.org/10.1007/s42979-023-01734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-01734-z

Keywords

Navigation