Skip to main content
Log in

Haar Wavelet-Based Fusion of Multiple Exposure Images for High Dynamic Range Imaging

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Compositing multiple exposure images with different exposure values has attracted lot of attention in the field of computational photography. There are lot of approaches to fuse multiple exposure images, in various domains like the transform domain and filtering-based approaches. Out of these, we propose here a Haar wavelet-based transform domain approach for fusing multiple exposure images. The input image stack is first sub-divided into a four layer decomposition comprising of the average, horizontal, vertical, and diagonal blocks. Then, each of the corresponding blocks is fused using a fusion rule using a coefficient matrix and then averaged. The Haar wavelet-based decomposition results in orthonormal basis functions over unit intervals which helps in processing high-frequency regions in the image stack. We get a good compression efficiency using Haar wavelets which can be used further to build compressed HDR images in HDR photography. We avoid multi-scale and pyramidal decompositions and determination of quality parameters, such as hue, saturation, and well-exposedness, thus reducing the computational and coding complexities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data Transparency/Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

The codes written during the current study are available from the corresponding author on reasonable request.

References

  1. Mertens T, Kautz J, Van Reeth F. Exposure fusion: a simple and practical alternative to high dynamic range photography. Comput Graph Forum. 2009;28(1):161–71.

    Article  Google Scholar 

  2. Raman S, Chaudhuri S. Low dynamic range solutions to the high dynamic range imaging problem. J Meas Sci Instrum. 2010;1(1):32–6.

    Google Scholar 

  3. Reinhard E, Heidrich W, Debevec P, Pattanaik S. High dynamic range imaging. acquisition, display, and image-based lighting; 2010.

  4. Ramakrishnan V, Pete DJ. Non subsampled shearlet transform based fusion of multiple exposure images. SN Comput Sci. 2020;1:326. https://doi.org/10.1007/s42979-020-00343-4.

    Article  Google Scholar 

  5. Viola P, Jones M. Robust real-time object detection. Int J Comput Vis IJCV. 2001;4:4.

    Google Scholar 

  6. Raman S, Chaudhuri S. Bilateral filter based compositing for variable exposure photography. In: Eurographics; 2009.

  7. Ramakrishnan V, Pete D. Savitzky–Golay filtering-based fusion of multiple exposure images for high dynamic range imaging. SN Comput Sci. 2021. https://doi.org/10.1007/s42979-021-00594-9.

    Article  Google Scholar 

  8. Donoho DL. De-noising by soft-thresholding. IEEE Trans Inf Theory. 1995;41(3):613–27. https://doi.org/10.1109/18.382009.

    Article  MathSciNet  MATH  Google Scholar 

  9. Xu Y, Weaver J, Healy DM Jr, Lu J. Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Trans Image Process. 1994;3:747–58. https://doi.org/10.1109/83.336245.

    Article  Google Scholar 

  10. Zhu Z, Chai Y, Yin H, Li Y, Liu Z. A novel dictionary learning approach for multi-modality medical image fusion. Neurocomputing. 2016;214:471–82. https://doi.org/10.1016/j.neucom.2016.06.036.

    Article  Google Scholar 

  11. Yin H, Li Y, Chai Y, Liu Z, Zhu Z. A novel sparse-representation-based multi-focus image fusion approach. Neurocomputing. 2016;216:216–29. https://doi.org/10.1016/j.neucom.2016.07.039.

    Article  Google Scholar 

  12. Raman S, Chaudhuri S. Bilateral filter based compositing for variable exposure photography. In: Eurographics (short papers); 2009. p. 1–4

  13. Ramakrishnan V. Exposure fusion in the non-sub-sampled contourlet domain. Int J Eng Res Appl (IJERA). 2019;9(2). ISSN: 2248-9622, www.ijera.com. Accessed 08 July 2021.

  14. Rhif M, Ben AA, Farah IR, Martinez B, Sang Y. Wavelet transform application for non-stationary time-series analysis: a review. Appl Sci. 2019;9:1345. https://doi.org/10.3390/app9071345.

    Article  Google Scholar 

  15. Akansu AN, Haddad RA. Multiresolution signal decomposition: transforms, subbands, and wavelets. Cambridge: Academic Press Inc; 1992.

    MATH  Google Scholar 

  16. Oppenheim A, Schafer R, Stockham T. Nonlinear filtering of multiplied and convolved signals. IEEE Trans Audio Electroacoust. 1968;16(3):437–66.

    Article  Google Scholar 

  17. Miller NJ, Ngai PY, Miller DD. The application of computer graphics in lighting design. J Illum Eng Soc. 1984;14(1):6–26.

    Article  Google Scholar 

  18. Upstill SD. The realistic presentation of synthetic images: image processing in computer graphics. Ph.D. thesis, 1985. AAI8610255. 5.

  19. Tumblin J, Rushmeier H. Tone reproduction for realistic images. IEEE Comput Graph Appl. 1993;13(6):42–8.

    Article  Google Scholar 

  20. Mann S, Picard R. On being ‘undigital’ with digital cameras: extending dynamic range by combining differently exposed pictures. In: Proceedings of Society for Imaging Science and Technology’s 48th Annual Conference; 1995. p. 442–448.

  21. Debevec PE, Malik J. Recovering high dynamic range radiance maps from photographs. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (New York, NY, USA), SIGGRAPH ’97, ACM Press/Addison-Wesley Publishing Co.; 1997. p. 369–378.

  22. Ward G. A contrast-based scalefactor for luminance display. Graph Gems. 1994;4:415–21.

    Article  Google Scholar 

  23. Stevens SS, Stevens J. Brightness function-parametric effects of adaptation and contrast. J Opt Soc Am. 1960;50:1139.

    Google Scholar 

  24. Tumblin J, Turk G. Lcis: a boundary hierarchy for detailpreserving contrast reduction. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques (New York, NY, USA), SIGGRAPH ’99. ACM Press/Addison-Wesley Publishing Co.; 1999. p. 83–90.

  25. Drago F, Myszkowski K, Annen T, Chiba N. Adaptive logarithmic mapping for displaying high contrast scenes. Comput Graph Forum. 2003;22:419–26.

    Article  Google Scholar 

  26. Schlick C. Quantization techniques for visualization of high dynamic range pictures. Berlin: Springer; 2021. p. 7–20.

    Google Scholar 

  27. Ward LG, Rushmeier H, Piatko C. A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans Vis Comput Graph. 1997;3(4):291–306.

    Article  Google Scholar 

  28. Mantiuk R, Daly S, Kerofsky L. Display adaptive tone mapping. ACM Trans Graph. 2008;27(3):68:1-68:10.

    Article  Google Scholar 

  29. Eilertsen G, Mantiuk RK, Unger J. Real-time noiseaware tone mapping. ACM Trans Graph. 2015;34(6):198:1-198:15.

    Article  Google Scholar 

  30. Oskarsson M. Temporally consistent tone mapping of images and video using optimal k-means clustering. J Math Imaging Vis. 2016;6:1–14.

    MathSciNet  Google Scholar 

  31. Fattal R, Lischinski D, Werman M. Gradient domain high dynamic range compression. ACM Trans Graph. 2002;21(3):249–56.

    Article  Google Scholar 

  32. Yee HY, Pattanaik S. Segmentation and adaptive assimilation for detail-preserving display of high-dynamic range images. Vis Comput. 2003;19(7):457–66.

    Article  Google Scholar 

  33. Krawczyk G, Myszkowski K, Seidel H-P. Lightness perception in tone reproduction for high dynamic range images. Comput Graph Forum. 2005;24(3):635–45.

    Article  Google Scholar 

  34. Cadik M. Perception motivated hybrid approach to tone mapping. WSCG; 2007. p. 129–136.

  35. Banterle F, Artusi A, Sikudova E, Bashfordrogers T, Ledda P, Bloj M, Chalmers A. Dynamic range compression by differential zone mapping based on psychophysical experiments. In: Proceedings of the ACM Symposium on Applied Perception (New York, NY, USA), SAP ’12. ACM; 2012. p. 39-46.

  36. Shahid H, Li D, Fanaswala A, Pourazad MT, Nasiopoulos P. A new hybrid tone mapping scheme for high dynamic range (hdr) videos. In: 2015 IEEE International Conference on Consumer Electronics (ICCE); 2015. p. 351–352.

  37. Lischinski D, Farbman Z, Uyttendaele M, Szeliski R. Interactive local adjustment of tonal values. ACM Trans Graph. 2006;25(3):646–53.

    Article  Google Scholar 

  38. Pattanaik SN, Ferwerda JA, Fairchild MD, Greenberg DP. A multiscale model of adaptation and spatial vision for realistic image display. In: Proceedings of the 25th annual conference on Computer graphics and interactive techniques. ACM; 1998. p. 287–298.

  39. Ashikhmin M. A tone mapping algorithm for high contrast images. In: Proceedings of the 13th Eurographics Workshop on Rendering (Aire-la-Ville, Switzerland, Switzerland), EGRW ’02, Eurographics Association; 2002. p. 145–156.

  40. Tumblin J, Hodgins JK, Guenter BK. Two methods for display of high contrast images. ACM Trans Graph (TOG). 1999;18(1):56–94.

    Article  Google Scholar 

  41. Dicarlo JM, Wandell BA. Rendering high dynamic range images; 2000.

  42. Pattanaik S, Yee H. Adaptive gain control for high dynamic range image display. In: Proceedings of the 18th Spring Conference on Computer Graphics (New York, NY, USA), SCCG ’02. ACM; 2002. p. 83–87.

  43. Durand F, Dorsey J. Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans Graph. 2002;21(3):257–66.

    Article  Google Scholar 

  44. Chen J, Paris S, Durand F. Real-time edge-aware image processing with the bilateral grid. ACM Trans Graph. 2007;26(3):103:1-103:9.

    Article  Google Scholar 

  45. Adams A, Gelfand N, Dolson J, Levoy M. Gaussian kd-trees for fast high-dimensional filtering. ACM Trans Graph. 2009;28(3):21:1-21:12.

    Article  Google Scholar 

  46. Adams A, Baek J, Davis M. Fast high-dimensional filtering using the permutohedral lattice. Comput Graph Forum. 2010;29(2):753–62.

    Article  Google Scholar 

  47. Baek J, Jacobs DE. Accelerating spatially varying gaussian filters. ACM Trans Graph. 2010;29(6):169:1-169:10.

    Article  Google Scholar 

  48. Yoshizawa S, Belyaev AG, Yokota H. Fast gauss bilateral filtering. Comput Graph Forum. 2010;29(1):60–74.

    Article  Google Scholar 

  49. Banterle F, Corsini M, Cignoni P, Scopigno R. A low-memory, straightforward and fast bilateral filter through subsampling in spatial domain. Comput Graph Forum. 2012;31(1):19–32.

    Article  Google Scholar 

  50. Yang Q. Recursive bilateral filtering. In: Proceedings European Conference on Computer Vision 12 2012; p. 399–413.

  51. Bae S, Paris S, Durand F. Two-scale tone management for photographic look. ACM Trans Graph. 2006;25(3):637–45.

    Article  Google Scholar 

  52. Reinhard E, Stark M, Shirley P, Ferwerda J. Photographic tone reproduction for digital images. ACM Trans Graph. 2002;21(3):267–76.

    Article  Google Scholar 

  53. Fattal R, Lischinski D, Werman M. Gradient domain high dynamic range compression. ACM Trans Graph. 2002;21(3):249–56.

    Article  Google Scholar 

  54. Mantiuk R, Myszkowski K, Seidel H-P. A perceptual framework for contrast processing of high dynamic range images. In: APGV ’05: Proceedings of the 2nd symposium on Applied perception in graphics and visualization (New York, NY, USA). ACM Press; 2005. p. 87-94.

  55. Bogoni L, Hansen M. Pattern-selective color image fusion. Pattern Recognit. 2001;34:1515–26.

    Article  MATH  Google Scholar 

  56. Vonikakis V, Bouzos O, Andreadis I. Multi Exposure Image Fusion Based on Illumination Estimation. In: Proceedings of the SIPA, Chania, Greece; 2011. p. 22–24, 135–42.

  57. Tico M, Gelfand N, Pulli K. Motion-blur-free exposure fusion. In: Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; p. 3321–3324.

  58. Jinno T, Okuda M. Multiple exposure fusion for high dynamic range image acquisition. IEEE Trans Image Process. 2012;21:358–65.

    Article  MathSciNet  MATH  Google Scholar 

  59. Shen R, Cheng I, Shi J, Basu A. Generalized random walks for fusion of multi-exposure images. IEEE Trans Image Process. 2011;20:3634–46.

    Article  MathSciNet  MATH  Google Scholar 

  60. Li S, Kang X. Fast multi-exposure image fusion with median filter and recursive filter. IEEE Trans Consum Electron. 2012;58(2):626–32. https://doi.org/10.1109/TCE.2012.6227469.

    Article  Google Scholar 

  61. Mitianoudis N, Stathaki T. Pixel-based and region-based image fusion schemes using ICA bases. Inf Fusion. 2007;8:131–42.

    Article  MATH  Google Scholar 

  62. Farid MS, Mahmood A, Al-Maadeed SA. Multi-focus image fusion using content adaptive blurring. Inf Fusion. 2019;45:96–112.

    Article  Google Scholar 

  63. Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process. 2006;54:4311–22.

    Article  MATH  Google Scholar 

  64. Bridges. Constructive mathematics: a foundation for computable analysis, TCS 219, 1999.

  65. Porter T, Duff T. Compositing digital images. In: Proceedings of SIGGRAPH; 1984. p. 253–259.

  66. Blinn JF. Compositing 1: theory. IEEE Comput Graph Appl. 1994;14(5):83–7.

    Article  Google Scholar 

  67. Blinn JF. Composting 2: practice. IEEE Comput Graph Appl. 1994;14(6):78–82.

    Article  Google Scholar 

  68. Debevec P, Malik J. Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH; 1997.

  69. Debevec PE, Malik J. Recovering high dynamic range radiance maps from photographs. SIGGRAPH 97. 1997.

  70. Goshtasby A. Fusion of multi-exposure images. Image Vis Comput. 2005;23:611–8.

    Article  Google Scholar 

  71. Raman S, Chaudhuri S. A matte-less, variational approach to automatic scene compositing. In: ICCV; 2007.

  72. Ying Z, Jianbing S, Ying H. Subband architecture based exposure fusiony. In: 2010 Fourth Pacific Rim Symposium on Image and Video Technology; 2010.

  73. Zhang W, Cham W.-K. “Gradient-directed composition of multi exposure images”, Computer Vision and Pattern Recognition, (2010).

  74. Burt P, Adelson T. The Laplacian pyramid as a compact image code. IEEE Trans Commun COM. 1983;31:532–40.

    Article  Google Scholar 

  75. Fritzel K, Lange M, Möstl G, Oleak H, Richter GM. Astron Nachr. 1977;298:189.

    Article  Google Scholar 

  76. Richter GM. Astron Nachr. 1978;299:283.

    Article  Google Scholar 

  77. Capaccioli M, Held EV, Lorenz H, Richter GM, Ziener R. Astron Nachr. 1988;309:69.

    Article  Google Scholar 

  78. Blume H , Fand A. SPTE YoZ 7097, Medical Troagiug TTT-Troage Capture and Display; 1989. p. 2.

  79. Haar A. Math Ann. 1910;69:331.

    Article  MathSciNet  Google Scholar 

  80. Daubechies I. Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math. 1988;41:909–96. https://doi.org/10.1002/cpa.3160410705.

    Article  MathSciNet  MATH  Google Scholar 

  81. Ramakrishnan V. Exposure fusion using particle filtering techniques. Int Conf Converg Digit World Quo Vadis (ICCDW). 2020;2020:1–4. https://doi.org/10.1109/ICCDW45521.2020.9318633.

    Article  Google Scholar 

  82. Mertens T, Kautz J, Van Reeth F. Exposure Fusion. In: 15th Pacific Conference on Computer Graphics and Applications (PG’07); 2007. p. 382–390. https://doi.org/10.1109/PG.2007.17

  83. Mantiuk R, Kim KJ, Rempel AG, Heidrich W. HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans Graph (TOG). 2011;30(4):1–14.

    Article  Google Scholar 

  84. Ramakarishnan V, Pete DJ. DCT based fusion of variable exposure images for HDRI. ArXiv, 2021. arXiv:abs/2110.00312.

  85. Banterle F, Artusi A, Sikudova E, Bashford-Rogers T, Ledda P, Bloj M, Chalmers A. Dynamic range compression by differential zone mapping based on psychophysical experiments. In: Proceedings of the ACM Symposium on Applied Perception (SAP ’12). Association for Computing Machinery, New York, NY, USA, 2012; p. 39–46. https://doi.org/10.1145/2338676.2338685.

  86. Bruce ND. ExpoBlend: information preserving exposure blending based on normalized log-domain entropy. Comput Graph. 2014;39:12–23.

    Article  Google Scholar 

  87. Lischinski D, Farbman Z, Uyttendaele M, Szeliski R. Interactive local adjustment of tonal values. ACM Trans Graph (TOG). 2006;25(3):646–53.

    Article  Google Scholar 

  88. Tan J, Huang Y, Wang K. Logarithmic tone mapping algorithm based on block mapping fusion. In: 2018 International Conference on Audio, Language and Image Processing (ICALIP). IEEE; 2018. p. 168–173.

  89. Reinhard E, Stark M, Shirley P, Ferwerda J. Photographic tone reproduction for digital images. In: Proceedings of the 29th annual conference on Computer graphics and interactive techniques; 2002. p. 267–276.

Download references

Acknowledgements

We would like to thank Erik Reinhard University of Bristol , for the set of nine chameleon images shown in Fig. 1. We would like to thank Tom Mertens, Jan Kautz, and Frank Van Reeth for providing us with code of Exposure Fusion algorithm and also with the set of multiple exposure house images in Fig. 14. We would like to thank the CAVE Computer Vision Laboratory, Columbia University for making available the multiple exposure images from their database shown in Figs. 6, 7, 16, 18, 20, and 22.

Funding

No funding sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Ramakrishnan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishnan, V., Pete, D.J. Haar Wavelet-Based Fusion of Multiple Exposure Images for High Dynamic Range Imaging. SN COMPUT. SCI. 3, 129 (2022). https://doi.org/10.1007/s42979-021-01010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-01010-y

Keywords

Navigation